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Testing 3D displacement vectors by confidence ellipsoids 
 
 
 

Juraj Sütti1 and Csaba Török2 
 
 

Testovanie deformačných vektorov 
     Testovanie 3D deformačných prejavov štandardnou procedúrou je možné aj geometrizovať , 
t.j. posúdiť vlastnosti vektorov posunov pomocou relatívnych konfidenčných elipsoidov.  
Sú uvedené dve metódy : priestorová a priesečníková a ich použitie ilustrované príkladom. 
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Introduction 
 
 Geodetic survey technics, making possible  3D measurements of points (GPS technologies, 
geodetic total stations, IMS, analytical photogrammetry) and following 3D processing networks in  
a convenient 3D cartesian reference frame sS, are increasingly used in the present time. Many of 
these 3D measuring technics are applied for various quality controls of products, regular checking of 
object movements, all kinds of deformation measurements, i.e. for threedimensionally determining  
the network object points Pk ,k∈〈1,p〉 in epochs ti,tj. The computed coordinate estimates, CS

ki=[XYZ]ki
T 

and CS
kj=[XYZ]kj

T  of Pki  and  Pkj (two positions of the same point Pk obtained from epochs ti,tj) are 
determined with accuracy described by absolute confidence ellipsoids Eki  and Ekj and their coordinate 
differences (discrepancies)  δCkij

S=Ckj
S-Cki

S= [δX δY δZ]kij
T are obtained with accuracy given by  

a relative confidence ellipsoid Ekij with the center in position Pki (Fig.1). 
 As known, using the discrepancy vector δCkij

S (giving informations about the movement of Pk 
between epochs ti,tj), one can accept a decision based on its testing by statistical hypotheses, whether 
the moving  Pk, expressed  by δCkij

S, is significant, i.e. if the position change of Pk from Pki to Pkj can be 
hold as its deformation displacement or if δCkij

S is a manifestation of the measuring errors in Cki
S and 

Ckj
S. An analogous information source for a such decision can be created by a relative confidence 

ellipsoid Ekij together with the vector δCkij
S. This ellipsoid may be therefore used (instead of  

conventional testing procedures) to deside on  the character of the 3D vector δCkij
S in the same way 

as the confidence ellipses are applied for testing 2D position changes of points (Heck et al., 1977; 
Hetényi, 1982, 1984). 
 The presented paper gives methods of using Ekij for testing δCkij and outlines the visualisation 
possibilities of these procedures. 
 

Testing the discrepancy vector 
 
Initial data for testing 
 

A convenient procedure for a common adjusting network observations from both  epochs ti,tj 
give  the coordinate estimates Ci

S and Cj
S of Pk, the discrepancy  vector δCkij

S and its cofactor matrix  
 
 QδCij=QCi+QCj-QCij-QCji                                                                                                                                                         (1) 
 
where the matrix arguments are submatrices of the cofactor matrix of the estimates (obtained within 
the network adjustment) 
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    ,                                                                                                 (2) Q
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Fig. 1.  Relative confidence ellipsoid at Pki. 
 
 
describing their accuracy.In addition, the aposteriori variance factor  so

2 and other measures  
of the adjusted network are available among them the covariance matrices of the estimates and  
of the difference vector 
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Spectral decomposition of the submatrices ΣCki, ΣCkj and ΣδCkij (Forsythe et al., 1977; Linkwitz, 1988; 
Pelzer, 1980, 1985) give 
 
 ΣCki=Mki Λki Mki

T,  ΣCkj=Mkj Λkj Mkj
T                                                                                    (4a) 

 ΣδCkij=MδCkij ΛδCkij MδCkij
T ,                                                                                                (4b) 

 
where 
 Λki=diag(λki1 λki2 λki3),  Λkj=diag(λkj1 λkj2 λkj3) ,                                                                (5a) 
 ΛδCkij=diag(λδCk1 λδCk2 λδCk3)                                                                                           (5b) 
 
are spectral matrices and 
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Fig. 2.  Geometric interactions of absolute ellipsoids at Pki and Pkj with the relative ellipsoid at Pki.  
 

modal matrices. The spectral matrices include eigenvalues ofΣCki, ΣCkj and ΣδCkij, the modal matrices  
in the columns give eigenvectors needed for  the axes orientation of the ellipsoids Eki , Ekj and  
of the relative ellipsoids Ekij in relation to the coordinate axes (X),(Y),(Z) of the system sS (Fig.2). 
 
Standard  method of testing 
 
 The conventional testing the vector δCkij  of Pk is made by the known procedure. The null 
hypothesis Ho :E(δCkij)=0 is formulated , i.e. a hypothesis assuming that δCkij occur due to accidental 
measuring errors, and this presumption is tested on the level α using the statistics (Koch, 1987; 
Linkwitz, 1988) 
 
 Tk=(δCkij

T QδCkij
-1 δCkij)/(ν1so

2)  ∼  F(ν1,ν2)                                                                        (7) 
 
with a central Fisher-Snedecor distribution of probability (if Ho is valid) and with degrees of freedom  
ν1= redundancy of the network,ν2=3. If T Fk k≥ −( ; ,1 1 2 )α ν ν , where Fk(1-α;ν1,ν2) is the critical value  
of the F-distribution , Ho is on the level α rejected, otherwise, if Tk 〈 Fk(1-α;ν1,ν2), Ho  can be admitted. 
Rejection of Ho indicates that the vector δCkij does not possess a stochastical character. Such vector 
may be with probability 1-α considered as output of significant coordinate changes of Pk (in the initial 
point Pki) ,i.e. as a deformation displacement vector of Pk from position Pki (in epoch ti) to position Pkj 
(in epoch tj). 
 

Testing with a relative confidence ellipsoid 
 
Absolute confidence ellipsoid 
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 As known (Hustopecký, 1987; Koch, 1987; Pelzer, 1980, 1985), the probability of positioning 
non accidental 3D coordinates Cki (true,theoretical position of Pki) in an accidental absolute point-
ellipsoid Eki 3) is 
 
 P{(Cki-Ceki)T ∑Ceki

-1 (Cki-Ceki) ≤ F(1-α;ν1,ν2)} = 1-α                                                           (8) 
 
where Ceki are estimates of Cki .The equation 
 
           (Cki-Ceki)T ∑Ceki

-1 (Cki-Ceki) = F(1-α;ν1,ν2)                                                                            (9) 
 
can be interpreted as that of a three-axis ellipsoid Eki with centre in Pki. By the covariance matrix ∑Ceki 
in Eq.(9) the accuracy of coordinates Ceki and by the factor F(1-α;ν1,2), the confidence volume of Eki 
are given. 
 Each ellipsoid  Eki by axes (ξki),(ηki),(ζki) creates an own 3D cartesian coordinate system ski

E 
(Fig.2) and then its equation may be defined according to (Linkwitz,1988; Pelzer, 1980, 1985) 
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In Eq.(10) it holds that 
 
 σξki

2 = so
2 λki1, σηki

2 = so
2 λki2, σζki

2 = so
2 λki3                                                                          (11) 

 
and semiaxes of Eki (determining its dimension and confidence space) are 
 
 aki=so(λki1F(1-α;ν1,ν2))1/2, 
 bki=so(λki2F(1-α;ν1,ν2))1/2,                                                                                   (12) 
            cki=so(λki3F(1-α;ν1,ν2))1/2, 
 
where eigenvalues λki may be obtained according to Eq.(5). 
 If F(1-α;ν1,ν2) = 1 (when 1-α=0,199), the confidence ellipsoid may be called the standard 
(Helmerts') ellipsoid. 
 
Relative confidence ellipsoid 
 
 Formal applying the vector Ckj-Cki = δCkij and their covariance matrix ∑δCkij (3b) in Eq.(9) 
instead of Cki-Ceki = vcki, one can write the equation of a relative confidence ellipsoid Ekij  
 
 δCkij

T ∑δCkij
-1 δCkij = F(1-α;ν1,ν2)                                                                                   (13a) 

or 

 
δξ δη δζkij

kij

kij

kij

kij

kija b c

2

2

2

2

2

2+ +  =  1                                                                                         (13b) 

 
with its centre in Pki and with axes (ξkij),(ηkij),(ζkij) creating an own cartesian coordinate system skij

E. 
Ellipsoid Ekij with lengths of its semiaxes 
 
 akij = so(λδk1 F(1-α;ν1,ν2))1/2, 
 bkij = so(λδk2 F(1-α;ν1,ν2))1/2,                                                                                           (14)     
 ckij = so(λδk3 F(1-α;ν1,ν2))1/2, 

                                                      
3statements and relations introduced in 3.1 for Pki are analogous for Pkj 
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is convenient for testing the vector δCkij and therefore it can be applied for this purpose. 
 The concept of the testing procedure is based on a judgement on the mutual space position of 
Ekij and the vector δCkij with the length 
 
 δCkij = δCkij

E= δCkij
S = (δξkij

2 + δηkij
2 + δζkij

2)1/2= 
                (δXkij

2 + δYkij
2 + δZkij

2)1/2.                                                                             (15) 
 
If δCkij with its initial point in Pki breaks through the ellipsoid surface (with centre in the same point Pki), 
Ho  is rejected , on the contrary, when δCkij lies inside the ellipsoid Ekij, Ho can be admitted. 
 Further, two methods will be introduced for determination of δCkij space positioning in relation 
to Ekij. For this, the vector δCkij has to be transformed  from the system skij

S into the system skij
E  

(of the ellipsoid coordinates)  according to  
 

    ,                                                       (16) δ
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where the transformation matrix is defined by Eq.(6b). 
 

Testing methods proposed 
 
Space method 
 
 Each point in sE

kij ( e.g. Pkj with coordinates δξkij,δηkij,δζkij) fulfilling Eq.(13b) lies on the ellipsoid 
surface and each of these points  with δζkij=0 has to be simultaneously situated in the centric-ellipse  
E kij of Ekij (Fig.1) 
 

 
δξ δηkij

kij

kij

kija b

2

2

2

2 1+ =                                                                                                            (17) 

 
on the plane {(ξkij

E) (ηkij
E)}, perpendicular to the axis (ζkij

E) in the point Pki.If components δξkij and  δηkij  , 
instead of Eq.(17), give an unequality 
 

 (
δξ δηkij

kij

kij

kija b

2

2

2

2 1+   ) 〉   ,                                                                                                   (18a) 

 
the point Pki will be situated outside of the area bounded by Ekij. This is equivalent to the statement, 
that the space position of the point Pki is outside  Ekij. The vector δ δ δ

r r r
C C Ckij

S
kij
E

kij≡ ≡  in this case 
breaks through the ellipsoid surface and its end-point Pkj is out of Ekij.This is the finally conclusion 
relating  
to the mutual space positions of δCkij, Pki and Ekij in situations with validity of Eq.(18a). 
 On the contrary, if components δξkij , δηkij fullfil the relation          

 (
δξ δηkij

kij

kij

kija b

2

2

2

2 1+   ) 〈  ,                                                                                                    (18b) 

 
i.e. when Pkj will be positioned inside of Ekij , it has to be investigated further whether Pkj will be found 
inside of Ekij (in the upper or lower halfellipsoide with regard to the plane of Ekij), or Pk  will be situated  
out of Ekij. To decide upon these possibilities, Eq. (13b) can be used , from which we have 
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 δζ
δξ δη

kij kij
kij

kij

kij

kij
c

a b
= − +1
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2

2

2( )   

or 
 

 f
c a bkij

kij

kij

kij

kij

kij

kij
( )δζ

ζ δξ δη
= − = +1

2

2

2

2

2

2   .                                                                            (19) 

 
According to Eq.(19), the point Pkj with coordinates δξkij and δηkij inside  the ellipse Ekij, and, 
simultaneously with δζkij  or f(δζkij) satisfying Eq. (19), is positioned on the surface of Ekij. 
 If the relation 
 

 f
a bkij

kij

kij

kij

kij
( ) (δζ

δξ δη
  〉 +

2

2

2

2 )                                                                                          (20a) 

 
 
is valid, Pkj will be found out of  the space demarcated by Ekij, i.e. the vector δCkij will be breaking 
through the ellipsoid. Otherwise, if  
 

 f
a bkij

kij

kij

kij

kij
( ) (δζ

δξ δη
   〈 +

2

2

2

2 )   ,                                                                                     (20b) 

 
 
the point Pkj and the vector δCkij will be situated in  Ekij. 
 
 
Intersection method 
 

This investigation  is based  on  comparing  length of the vector  δCkij
E =   

(δξkij
2 + δηkij

2 + δζkij
2)1/2≡ δCkij

S ≡ δCkij  with the distance nkij = P N  (Fig.1), where Nki kij kij  
is the  intersection point of the straight line defined by Pki,Pkj (direction of the vector δCkij)  
with  the ellipsoid surface.  
 The distance nkij in skij

E may be determined  by 
 

 
n

n

kij Nkij Pki Nkij Pki Nkij Pki

kij Nkij Nkij Nkij

= − + − + −

= + +

( ) ( ) (ξ ξ η η ζ ζ
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2 2

2 2 2

) ,2

                                        (21) 

 
because  ξPki = ηPki = ζPki = 0. Coordinates of the intersection point can be obtained by solving a linear 
equation system, consisting of Eq.(13b) and the equation for the straight line through Pki,Pkj  
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with regard to the null coordinate values of Pki. The solution of Eq. (22) yields 

 307



 
Sütti & Csaba: Testing 3D displacement vectors by confidence ellipsoids 

 

ξ

η
δη

δξ

ζ
δζ

δξ

Nkij

Nkij
kij

kij

Nkij
kij

kij

k

k

k

=

=

=

1

1

1

/ ,

,                                                                                                         (23) 

where  

 k
a b ckij

kij

kij kij

kij

kij kij
= + +

1
2

2

2 2

2

2 2

δη

δξ

δζ

δξ
    .                                                                                 (24) 

 
Comparing δCkij and nkij, if 
 
 δCkij > nkij                                                                                                                 (25a) 
 
the end point Pkj of the vector δCkij is positioned out of  Ekij ,i.e. the vector breaks through the ellipsoid 
surface. On the contrary, if 
 
 δCkij < nkij ,                                                                                                               (25b) 
 
the point Pkj (and at the same time the whole vector  δCkij) will be found inside   Ekij. 
 

Visualisation of results 
 
 Except for getting numerical results and statements from the testing procedure, a convenient 
graphical presentation of these results is expedient. Using it, one can obtain  a global survey of mutual 
relations of the vectors δCkij and the ellipsoids Ekij in the point field of a network. Such a presentation 
may enable for the observer an immediate glance over  the  situation, i.e. over  dimensions and 
orientation of the ellipsoids Ekij, space relations between Ekij and δCkij (whether δCkij is going through 
Ekij, in which direction, with what length etc.). By a suitable visualisation of these informations, a good 
visual survey of displaying  the vectors δCkij may be possible in the whole space of the deformation 
network. 
 The standard computer possibilities of a 3D visualisation using mesh surfaces,grids,contour 
plots and other forms are not always the most convenient ones from the mentioned points of view 
because of unsufficiently information content of such presentations. It seems that various 2D line-form 
plotting of Ekij and its relation to δCkij, completed with convenient and needful numeric or symbol data, 
is the most acceptable 3D graphic description of these objects and their mutual interactions. From 
such 2D visualisations of the computed  results in the 3D space, e.g. the following ones can be 
applied: scaled and oriented drawing  Ekij, plotting the scaled  and oriented true length of δCkij  
in the plane {(X) (Y)} with data of its inclination (related to (Z) in 〈0,π〉 ) and using different possible 
designations for δCkij being inside or outside  of Ekij (in Fig.3  double line, full one). 
 All data necessary  for plotting and designation of the above mentioned geometrical 
characteristics are computable within computer supported solving scalar and vector quantities  
for performing test. Using these data and a suitable software for the automatical drawing, a graphical 
output can be done showing at which points of the network are 3D deformation displacements. 
 Other ways of 2D plotting or combinations of 3D and 2D visualisations with various numerical 
and symbolic complements (increasing the lucidity of these plots) are possible and applicable too. 
 
 

Example 
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 In a 3D landslide deformation network (Fig.3), surveyed by  a geodetic total station (spatial 
distances to 3 km,horizontal and zenit angles, trigonometrical height differences measured) and 
processed in a 3D cartesian system for epochs to (start) and t1 (next) using the Gauss-Markoff model,  

Fig. 3.  Visualisation of the geometric positions between discrepancy vectors and the relative ellipsoids at the network points 
(scale: network 1 : 2000, vectors and ellipsoids 2 : 1). 

 

coordinate estimates Co and C1 of the object points Bk,k∈〈1,4〉, the vector δCk , the aposteriori 
variance factor so

2=89,354 and the cofactor matrix QδC have been determined. The accuracy of the 
adjusted coordinates is given by the average standard deviation 5.56 mm. 
 The coordinates of the vectors δCkij

S (of points C1), related to points with Co in sS, are (Tab.1)4 
: 
 
 
Point δXS δYS δZS δξE δηE δζE 
1    6.23    3.77    7.08 -1.04    6.60    7.65 
2 -25.62  18.27 -29.44 -3.55 -42.78   -3.81 
3  13.05 -12.88  14.70  5.17  19.90 -11.39 

                                                      
4all numeric data are in mm 
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4   -1.98   -2.06   -1.43 -1.80   -2.59     0.52 
                                    Tab.1                                           Tab.2 
 
 
Using QδC ,the corresponding  spectral (Eq.(5b)) and modal matrices (Eq.(6b)) for the points Bk , by 
transformation (16) of the coordinates δξE,δηE,δζE of the end points C1 of discrepancy vectors in sk01

E  
(Tab.2),  and the lengths of the vectors  δCk01 according to Eq.(15) (Tab.3),  were further computed. 
 
  

Point δCk01 nko1 
1 10.16 5.65 
2 43.09 5.78 
3 23.50 6.31 
4 3.20 8.89 
                Tab.3     Tab.6 

 
 
 
 
 
     
 
 
Lengths of the semiaxes of the standard relative ellipsoid Ek01 (14) are (Tab.4): 

  
Point a b c ξNk01 ηNk01 ζNk01 
1 12.44 8.04   4.79 0.58 -3.67 -4.26 
2   2.35 5.88 12.48 0.48  5.74  0.51 
3   4.20 7.94 10.26 1.39  5.34 -3.06 
4   6.07 8.12 12.63 5.02  7.20 -1.45 
                                Tab.4                                    Tab.5 

 
 
 
 
 
 
   

 
For testing by the intersection method, the length nk01 (Eq.(21)) (Tab.6) and the coordinates for the 
intersection points of the vectors δCk01 through Ek01 were computed using Eq.(23) and (24) (Tab.5). 
 The comparison of nk01 with δCk01 yields 
 n1 < δC1,                                                              
 n2 < δC2 ,                                                              
 n3 < δC3 ,                                                             
 n4 > δC4 
and, as may be declared, movements of B1,B2 and B3 should be hold as their significant position 
changes, i.e. these movements should be taken for deformation displacements only the movement  
of B4 may not be considered as a deformation displacement of this point. 
 The standard relative ellipsoids  with the corresponding vectors  are visualised in the way 
introduced in chapter 5 (Fig.3) to gain a good view upon the point field of the network  
with the maximum of needed information.For each point Bk : 
 - E k01 of Ek01 given by their scaled  true semiaxes ak01, bk01 (Tab.4) and oriented by bearings 
σak01, was drawn  in the plane {(X) (Y)}, 
 - the scaled projections of the vector  δCk01 (Tab.3) with orientations given by bearings σδCk01 

were plotted  in the plane {(X) (Y)} with their inclinations βδC  to (Z). 
 Bearings of semiaxes "a" are computable from the modal matrices (Eq.(6b)), bearings and 
inclinations of δCk01 from the  coordinates (Tab.1). 
 

Conclusion   
 
 The conventional numerical testing procedures  in the 3D deformation measurements can be 
supplied by equivalent graphical testing the discrepancy vectors.For this reason, various methods may 
be applied that investigate the mutual space relations of the vectors and the corresponding relative 
confidence ellipsoids. To this form of  testing a suitable graphic description  of the space situation  
of testing results should be joined that could  given a good visual presentation. 
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