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Testing 3D displacement vectors by confidence ellipsoids

Juraj Siitti" and Csaba T6rék?

Testovanie deformaénych vektorov
Testovanie 3D deformacénych prejavov $tandardnou procedurou je mozné aj geometrizovat',
t.j. posudit vlastnosti vektorov posunov pomocou relativnych konfidenénych elipsoidov.
Su uvedené dve metddy : priestorova a priese¢nikova a ich pouzitie ilustrované prikladom.
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Introduction

Geodetic survey technics, making possible 3D measurements of points (GPS technologies,
geodetic total stations, IMS, analytical photogrammetry) and following 3D processing networks in
a convenient 3D cartesian reference frame s°, are increasingly used in the present time. Many of
these 3D measuring technics are applied for various quality controls of products, regular checking of
object movements, all kinds of deformation measurements, i.e. for threedimensionally determmmg
the network object points P ,ke(1,p) in epochs ;. The computed coordinate estimates, cS K= [XYZ]k,
and CS K= [XYZ]kJ of P4 and Py (two positions of the same point P, obtained from epochs t;t;) are
determined with accuracy described by absolute confidence ellipsoids E,; and Ey; and their coordinate
differences (discrepancies) SCk., —CkJ -C>=[6X 8Y SZ]k., are obtained with accuracy given by
a relative confidence ellipsoid E,; with the center in posmon P« (Fig.1).

As known, using the discrepancy vector SCK,, (giving informations about the movement of Py
between epochs t;t;), one can accept a decision based on its testing by statistical hypotheses, whether
the moving Py, expressed by SCkIJ ,is S|gn|f|cant i.e. if the position change of Py from Py to Py can be
hoId as its deformation displacement or if ESCKIJ is a manifestation of the measuring errors in Ck. and
ij An analogous information source for a such decision can be created by a relative confidence
ellipsoid Ey; together with the vector SCK.J . This ellipsoid may be therefore used (instead of
conventional testing procedures) to deside on the character of the 3D vector SCk., in the same way
as the confidence ellipses are applied for testing 2D position changes of points (Heck et al., 1977;
Hetényi, 1982, 1984).

The presented paper gives methods of using Ey; for testing 6Cy; and outlines the visualisation
possibilities of these procedures.

Testing the discrepancy vector
Initial data for testing

A convenient procedure for a common adjusting network observatlons from both epochs t;f;
give the coordinate estimates C and C of Py, the discrepancy vector ESCkIJ and its cofactor matrix

Qscii=Qci+ Qci-Qci-Qg; (1)

where the matrix arguments are submatrices of the cofactor matrix of the estimates (obtained within
the network adjustment)
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Fig. 1. Relative confidence ellipsoid at Py;

describing their accuracy.In addition, the aposteriori variance factor s,> and other measures

of the adjusted network are available among them the covariance matrices of the estimates and
of the difference vector
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|_ Qi1 L Q6C1p—| I_ 2sc1 L zSC']p—i
2scij = s M Qe M| =| M 2 M| . (3b)
LQscm L Qscp Jij Lzscm L 25cp Jij

Spectral decomposition of the submatrices Zcyi, Zci and Zsckij (Forsythe et al., 1977; Linkwitz, 1988;
Pelzer, 1980, 1985) give

z‘ka| I\/|k| Ak| Mkl ’ z:ij Mkj Akj Mkj (48)

Zscki=Msckij Ascki MbCli , (4b)
where

Ag=diag(hi1 A2 Mis), Ag=diag(Aj1 Mgz Miga) » (5a)

Ascri=diag(Ascit Ascke Mscka) (5b)

are spectral matrices and

|—cos(X§) cos(Xn) cos(Xg)T rcos(Xé) Xn) cos(XE) —|
M J{COS(Y&) cos(Yn) cos(Yg)J| WMy TCOS(Y@ Yn cos(YC) J (6a)
ki

cos(Zg) cos(Zn) cos(ZL)l,. cos(Z&) s(Zn) cos(Zf)

rcos(XF,) cos(Xn) cos(X(¢) 1
Msckij =| cos(YE) cos(Yn) cos(YC) (6b)
{cos(Z&) cos(Zn) cos(ZL) J

kij
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(Z)I

Fig. 2. Geometric interactions of absolute ellipsoids at Py and Py; with the relative ellipsoid at Py

modal matrices. The spectral matrices include eigenvalues ofZcy;, Zcij and Zscyi, the modal matrices
in the columns give eigenvectors needed for the axes orientation of the ellipsoids Ey; , Ey and

of the relative ellipsoids Ey; in relation to the coordinate axes (X),(Y),(Z) of the system s° (Fig.2).

Standard method of testing

The conventional testing the vector 6C,; of Py is made by the known procedure. The null
hypothesis H, :E(5Cy;)=0 is formulated , i.e. a hypothesis assuming that 5C,; occur due to accidental
measuring errors, and this presumption is tested on the level a using the statistics (Koch, 1987;
Linkwitz, 1988)

Ti=(8Cx;' Qscki" 8Cki)/(v18oY) ~ F(v1,v2) (7)

with a central Fisher-Snedecor distribution of probability (if H, is valid) and with degrees of freedom
v,= redundancy of the network,v,=3. If T, > F, (1—a;Vv4,V, ), where Fy(1-a;v4,v,) is the critical value
of the F-distribution , H, is on the level a rejected, otherwise, if Ty ( Fi(1-a;v4,v2), H, can be admitted.
Rejection of H, indicates that the vector 5Cy; does not possess a stochastical character. Such vector
may be with probability 1-a. considered as output of significant coordinate changes of Py (in the initial

point Py) ,i.e. as a deformation displacement vector of P, from position Py (in epoch t;) to position Py
(in epoch t).

Testing with a relative confidence ellipsoid

Absolute confidence ellipsoid
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As known (Hustopecky, 1987; Koch, 1987; Pelzer, 1980, 1985), the probability of positioning
non accidental 3D coordinates Cy; (true,theoretical position of Py) in an accidental absolute point-
ellipsoid Ey; ¥ is

P{(Ci-Cei)’ Zcek " (Cki-Ceii) < F(1-0;v1,v2)} = 1-0t (8)
where Cg; are estimates of Cy; .The equation
(Ci-Ceki)" Zceki ' (Cki-Ceii) = F(1-0v1,v2) 9)
can be interpreted as that of a three-axis ellipsoid E; with centre in Py. By the covariance matrix X cex;
in Eq..(9) the accuracy of coordinates Cg and by the factor F(1-a;v4,2), the confidence volume of Ej;
are given.

Each ellipsoid Ey by axes (&xi),(n«i).(Cki) creates an own 3D cartesian coordinate system skiE
(Fig.2) and then its equation may be defined according to (Linkwitz,1988; Pelzer, 1980, 1985)

2 2 2
Eki + MNki + Cii

=F(1-o;v4,v,) (10a)
2 T2 V1, V2
Géki Onki  Ocki
or
2 2 2
Si M, Gk _
e R} (10b)
- b:  ci
ak| ki ki
In Eq.(10) it holds that
Geki> = So’ Mits Onki- = So- Mkizs Ockie = So- Mkia (11)

and semiaxes of Ey; (determining its dimension and confidence space) are

a=So(MitF(1-a5v1,v2)) 2,

bki:So(MizF(']'OL;V1,V2))1/2, (12)
Ci=So(MaaF (1-0v4,v2)) %,

where eigenvalues Ay may be obtained according to Eq.(5).
If F(1-a;vq,v2) = 1 (when 1-0=0,199), the confidence ellipsoid may be called the standard
(Helmerts') ellipsoid.

Relative confidence ellipsoid

Formal applying the vector Cy-Cyi = 6Cy; and their covariance matrix 2scii (3b) in Eq.(9)
instead of Cy-Cex = Vi, ONe can write the equation of a relative confidence ellipsoid Ey

6CkijT ZSCkij_1 8Cyij = F(1-0;v1,v2) (13a)
or

2 2 2
Sakij N 8leij N 6Ckij
2 2 2
aij bk Cii

=1 (13b)

with its centre in Py and with axes (&;),(nk;),(Ckij) creating an own cartesian coordinate system skijE.
Ellipsoid E,; with lengths of its semiaxes
aj = So(Ask1 F(1'(X§V1,V2)):Z,
byij = So(Ask2 F(1'G;V1,V2))1/2, (14)
Ckij = So(Aska F(1-04;v1,v2)) ™,

3statements and relations introduced in 3.1 for P« are analogous for Py
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is convenient for testing the vector 6Cy; and therefore it can be applied for this purpose.
The concept of the testing procedure is based on a judgement on the mutual space position of
E«j and the vector 3C,g with the length

|80k|J |- |60ku |_ |SCkIJ | = | 6é::,klj +6nku +8Cku 1/2|_
|(6Xku + 8qu + 82ku ) | . (15)

If 8Cy; with its initial point in Py breaks through the ellipsoid surface (with centre in the same point Py),
H, is rejected , on the contrary, when 3Cy; lies inside the ellipsoid E,j, H, can be admitted.

Further, two methods will be introduced for determination of E‘)Ck,J space positioning in relation
to Ey;. For this, the vector 6Cy; has to be transformed from the system sku into the system skuE
(of the ellipsoid coordinates) according to

[z ] |F5x13
8Cku { T]J = MSCku 8Cku = Méékij{SYJ : (16)
6G Ki 62,

where the transformation matrix is defined by Eq.(6b).
Testing methods proposed
Space method
Each point in sEkij ( e.g. Py with coordinates 8&;,nij,C;) fulfilling Eq.(13b) lies on the ellipsoid

surface and each of these points with 5(,;=0 has to be simultaneously situated in the centric-ellipse
E Kij of Ekij (F|g1)

6§klj Snﬁu
>t =1 (7
aij D

on the plane {(ékijE) (leijE)}, perpendicular to the axis ((;kijE) in the point P,.If components 6&; and dny |
instead of Eq.(17), give an unequality

6 I 6 I
(5 ik‘ t?k’)>1 (18a)
Kij Kij

the point Py will be situated outside of the area bounded by E;. ThIS is equwalent to the statement,
that the space position of the point Py is outside Eyj. The vector SCk” = SCKU = ESCkIJ in this case

breaks through the ellipsoid surface and its end-point Py is out of E.This is the finally conclusion
relating
to the mutual space positions of 3Cy;, P and Ey; in situations with validity of Eq.(18a).

On the contrary, if components 8&; , dny; fullfil the relation

6&klj 6nklj
2

kij bklj

AR (18b)

i.e. when Py will be positioned inside of E; , it has to be investigated further whether P, will be found
inside of E,; (in the upper or lower halfellipsoide with regard to the plane of E;), or P, will be situated
out of E;. To decide upon these possibilities, Eq. (13b) can be used , from which we have
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SE2 &n2.
0Cyj = Cyij 1—(%+ gku
Kij kij
or
i 3 2| 5 2i'
I . B
kij kij kij

According to Eq.(19), the point P with coordinates &&; and oy inside

(19)

the ellipse Ey;, and,

simultaneously with 8 or f(8&;) satisfying Eq. (19), is positioned on the surface of E,;.

If the relation

aku Bmfij

klj bklj

165 (5

(20a)

is valid, P will be found out of the space demarcated by Ey;, i.e. the vector 5Cy; will be breaking

through the ellipsoid. Otherwise, if

&ku 511%,-

aku

30| ¢ (5

the point P and the vector 5Cy; will be situated in E,.

Intersection method

This investigation is based on comparing length of the vector 6Cki,-E =

(20b)

‘ (5@(”2 + 5nkij2 + SCkij2)1/2 ’ = 5Ckijs = 8Ckij with the distance Nyij = PkiNkij (F|g1 ), where Nkij
is the intersection point of the straight line defined by Py;,Pj; (direction of the vector 5Cy;)

with the ellipsoid surface.
The distance n; in sk” may be determined by

Nyij = \/(éNkij — & )2 + (nNkij — Npki )2 + (CNkij —Cpii )2,

2 2 2
Nyij = \/&Nkij + Mkij + G

because é;Pki = Npki =

(21)

Cpvi = 0. Coordinates of the intersection point can be obtained by solving a linear

equation system, consisting of Eq.(13b) and the equation for the straight line through Py;,Py

55.\%] Sn&ij SC%,- _
>+ +— =1,
Ayij bku Ckij

E)Nkij Mk CNkij

8@kij 8T]kij SCkij

with regard to the null coordinate values of Py;. The solution of Eq. (22) yields

(22)
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ﬁNkij =1/ \/E’
My 1
Mnkij = aﬁ’ (23)
OCxj 1
CNkij = %W
where
_ 1 N 8niij . SC%j 24)
aiij bﬁij&toiij Ciij&iﬁij
Comparing 5Cy; and ny;, if
[8Cx; > nig (25a)

the end point Py; of the vector 6C; is positioned out of E,; .i.e. the vector breaks through the ellipsoid
surface. On the contrary, if

|5Ckij |< Nij (25b)
the point Py (and at the same time the whole vector 5Cy;) will be found inside E.
Visualisation of results

Except for getting numerical results and statements from the testing procedure, a convenient
graphical presentation of these results is expedient. Using it, one can obtain a global survey of mutual
relations of the vectors 8Cy; and the ellipsoids E; in the point field of a network. Such a presentation
may enable for the observer an immediate glance over the situation, i.e. over dimensions and
orientation of the ellipsoids E,j, space relations between Ey; and 8Cy; (whether 5Cy; is going through
Eyj, in which direction, with what length etc.). By a suitable visualisation of these informations, a good
visual survey of displaying the vectors 8Cy; may be possible in the whole space of the deformation
network.

The standard computer possibilities of a 3D visualisation using mesh surfaces,grids,contour
plots and other forms are not always the most convenient ones from the mentioned points of view
because of unsufficiently information content of such presentations. It seems that various 2D line-form
plotting of E,; and its relation to 5C,;, completed with convenient and needful numeric or symbol data,
is the most acceptable 3D graphic description of these objects and their mutual interactions. From
such 2D visualisations of the computed results in the 3D space, e.g. the following ones can be
applied: scaled and oriented drawing Ey;, plotting the scaled and oriented true length of 5Cy;
in the plane {(X) (Y)} with data of its inclination (related to (Z) in (0,%) ) and using different possible
designations for 8Cy; being inside or outside of Ey; (in Fig.3 double line, full one).

All data necessary for plotting and designation of the above mentioned geometrical
characteristics are computable within computer supported solving scalar and vector quantities
for performing test. Using these data and a suitable software for the automatical drawing, a graphical
output can be done showing at which points of the network are 3D deformation displacements.

Other ways of 2D plotting or combinations of 3D and 2D visualisations with various numerical
and symbolic complements (increasing the lucidity of these plots) are possible and applicable too.

Example
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In a 3D landslide deformation network (Fig.3), surveyed by a geodetic total station (spatial
distances to 3 km,horizontal and zenit angles, trigonometrical height differences measured) and
processed in a 3D cartesian system for epochs t, (start) and t; (next) using the Gauss-Markoff model,

X

§¢,1147,9%)

Fig. 3. Visualisation of the geometric positions between discrepancy vectors and the relative ellipsoids at the network points
(scale: network 1 : 2000, vectors and ellipsoids 2 : 1).

coordinate estimates C, and C; of the object points Byke(1,4), the vector 6Ci , the aposteriori
variance factor soz=89,354 and the cofactor matrix Qs;c have been determined. The accuracy of the
adjusted coordinates is given by the average standard deviation 5.56 mm.

The coordinates of the vectors 5Cy;° (of points Cy), related to points with C, in s°, are (Tab.1)*

Point ox® sYS 6Z° 5EE 5" 8-

1 6.23 3.77 7.08 -1.04 6.60 7.65
2 -25.62 18.27 -29.44 -3.55 -42.78 -3.81
3 13.05 -12.88 14.70 5.17 19.90 -11.39

“all numeric data are in mm
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[ 4 | -1.98 -2.06 143  |-1.80 -2.59 052 |
Tab.1 Tab.2

Using Qsc ,the corresponding spectral (Eq.(5b)) and modal matrices (Eq.(6b)) for the points By , by
transformation (16) of the coordinates 5£5,6n%,5¢F of the end points C; of discrepancy vectors in syo1-
(Tab.2), and the lengths of the vectors 8Cyo1 according to Eq.(15) (Tab.3), were further computed.

Point 8Co1 Nkot

1 10.16 5.65

2 43.09 5.78

3 23.50 6.31

4 3.20 8.89
Tab.3 Tab.6

Lengths of the semiaxes of the standard relative ellipsoid Eyy1 (14) are (Tab.4):

Point | a b c Enkot TINKO1 Chkot

1 12.44 8.04 4.79 0.58 -3.67 -4.26

2 2.35 5.88 12.48 0.48 574 0.51

3 4.20 7.94 10.26 1.39 5.34 -3.06

4 6.07 8.12 12.63 5.02 7.20 -1.45
Tab.4 Tab.5

For testing by the intersection method, the length n (Eg.(21)) (Tab.6) and the coordinates for the
intersection points of the vectors 3Cyos through Eyq, were computed using Eq.(23) and (24) (Tab.5).
The comparison of nygs with 6Cyp4 yields

ng < 5C1,

Ny < 8C2 ,

N3z < 803 i

Ng > 804
and, as may be declared, movements of B4,B, and B; should be hold as their significant position
changes, i.e. these movements should be taken for deformation displacements only the movement
of B4 may not be considered as a deformation displacement of this point.

The standard relative ellipsoids with the corresponding vectors are visualised in the way
introduced in chapter 5 (Fig.3) to gain a good view upon the point field of the network
with the maximum of needed information.For each point By :

- E o1 Of Exo1 given by their scaled true semiaxes ago1, byot (Tab.4) and oriented by bearings
Gako1, Was drawn in the plane {(X) (Y)},

- the scaled projections of the vector 8Cyq¢ (Tab.3) with orientations given by bearings c;cxo1
were plotted in the plane {(X) (Y)} with their inclinations Bsc to (Z).

Bearings of semiaxes "a" are computable from the modal matrices (Eq.(6b)), bearings and
inclinations of 6Cyy¢ from the coordinates (Tab.1).

Conclusion
The conventional numerical testing procedures in the 3D deformation measurements can be
supplied by equivalent graphical testing the discrepancy vectors.For this reason, various methods may
be applied that investigate the mutual space relations of the vectors and the corresponding relative

confidence ellipsoids. To this form of testing a suitable graphic description of the space situation
of testing results should be joined that could given a good visual presentation.
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