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Matematické  modelovanie  lomových  bodov  
v  poklesových  kotlinách 

   V príspevku je prezentovaná teória matematického modelovania  polynomiálnych lomových 
bodov pri analýze deformačných charakteristík poklesových kotlín. Teória určovania lomových 
bodov bola vyvinutá ako súčasť kinematických analýz horninového masívu dobývacieho 
ložiskového poľa magnezitu vo východoslovenskom regióne. Teoretické poznatky modelovania 
sú doplnené praktickými výsledkami deformačných meraní in situ. 
 
Kľučové slová: deformačné modelovanie, lomový bod, pokles, matematické hypotézy. 

 
 

Introduction 
 

A gradual subsidences development at the Košice-Bankov mine region in Slovakia was 
minitored by geodetic measurements (levelling) from the beginning of mine underground activities in 
the magnesite mineral deposit. The stage, so-called the static analysis from long-term geodetic 
observations cumulated into every year periodical measurements can be indicated in the present time. 
The analysis of time factors of the gradual subsidences development continuing with underground 
exploitation allows a production of more exact model situations in each separate subsidence 
processes, and especially it provides an upper degree in a prevence of deformations in the earth 
surface (Knothe, 1984; Sedlák, 1992 a,b, 1993 a,b, 1994; Sedlák & Havlice, 1993). 

A possibility of improving polynomial modelling subsidences is conditioned by the knowledge 
to detect position of so-called breakpoints, i.e. the points in the earth surface in which the subsidence 
border with a zone of breaches and bursts start to develope over the mineral deposit exploitation. It 
means that the breakpoints determine a place of the subsidences where it occurs to the expressive 
fracture of the earth continuous surface consistence. For this reason it is necessary to present some 
theoretical knowledge and practical procedures from a long-term exploration in deformation 
subsidence measurements at the magnesite mineral deposit mine field in the Košice-Bankov region. 
 

Research overview 
 

Problems of mine damages in the earth surface, dependent on the underground mine 
activities at the magnesite mineral deposit, did not receive a systematic research attention in Slovakia 
till 1976. After there, the requirements for a scientific motivation in the subsidences development 
following out from rising exploitations and from introducing progressive mine technologies were taken 
in consideration. This scientific exploration in the subsidences must be supported by systematic 
monitoring mine influences in the earth surface using precise geodetic methods. 

The monitoring station project in the Košice-Bankov case was designed and realized by the 
research staff of the Department of Geodesy & Geophysics of the Technical University of Košice in 
1976 (Kunák et al., 1985). The first monitoring data were taken from this monitoring station in the 
same year. The monitoring station is situated in the earth surface in  
the Košice-Bankov mine region near by the West shaft. The monitoring station is constructed from the 
geodetic network of the reference points and objective ones situated in seven profiles. 
 

Geodetic deformation analysis 
 

The deformation analysis based on  geodetic methods may be divided into four steps: 
                                                      
1 Katedra geodézie a geofyziky F BERG Technickej univerzity, 043 84 Košice, Park Komenského 19 
  (Recenzenti: Prof.Ing. Ladislav Kunák, CSc. a  Doc.Ing. Jozef Novák, CSc. Revidovaná verzia doručená 20.2.1997) 
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 1. Design of the geodetic monitoring network. First the monitoring network and an observation 
scheme are designed such that requirements following from the anticipated deformation pattern and 
the specified accuracy (precision and reliability) criteria are met. 
 2. Single-epoch analysis. The least-squares adjustment of the geodetic measurements in the 
free network mode is performed assuming that no deformations have taken place during this epoch. 
The main objective of this step is to establish a consistent mathematical model of the network, 
resulting in adjusted coordinates with a corresponding quality description in terms of precision and 
reliability. 
 3. Stability evaluation of reference points. Here a distinction should be made between 
absolute and relative deformation maesurements. Absolute deformations are studied relative to a set 
of points which are assumed to be stable whereas in the case of relative deformation measurements 
no stable points are available. 

If present, reference points will be checked for instabilities. The whole set of available 
reference points throughout all epochs will be adjusted under the assumption that no deformation has 
taken place. Statistical testing is performed for the detection and identification of unstable reference 
points, which will be removed from the set. The final adjustment provides coordinates of the stable 
reference points with respect to which deformations of the object points will be described. 
 4. Deformation analysis. In practice the deformation pattern is often described by a polynomial 
model. Polynomial models in 1-, 2- or 3-dimensions (1D, 2D, 3D) are linear models and especially the 
parameters of the lower order models have a distinct physical meaning. In the least-squares 
adjustment the parameters of the mathematical model chosen are estimated and tested for their 
significance. Possible modifications of the deformation model will be based on the test results. 
 

In the case of multi-epoch analysis a distinction can be made between a static and kinematic 
approach. In the case of static approach only two epochs are taken into consideration at the same 
time. In the case of a kinematic approach all available epochs are taken into account. This allows the 
detection of possible trends in the data, it allows the study of derivative functions such as velocity and 
it allows improvement of the identification of possible errors in the measurement data. The 
disadvantage of the kinematic approach, however, may be the large number of data to be processed. 
 
1D deformation analysis from levelling networks 
 

In accordance with the general phases of the geodetic deformation analysis the project at 
hand was defined to contain the following phases: 

 1. Single epoch evaluation of the levelling data available. 
 2. Stability evaluation of reference benchmarks. 
 3. Estimation of the most likely deformation model. 
Obviously the design step is no element of the project since we are dealing with existing 

networks. The single epoch evaluation concentrates on the evaluation of the functional model, the 
observational data and the stochastic model. By means of the integration of hypothesis testing, 
including the outlier detection, and the variance component estimation a consistent mathematical 
model is obtained. 

In the second phase of the project the assumption in the functional model of stable reference 
benchmarks is tested. Unstable benchmarks are removed from the set and will further be treated as 
objective-points. After establishing the correct functional model the stochastic model may be improved 
as well. Again a consistent mathematical model results. 

The aim in the third phase is to arrive at the most likely mathematical model describing the 
deformation pattern underlying the data. The functional model part is restricted to 1D- or 3D-
polynomials, which are either a function of time or a function of both positions (x,y) and time. The 
mathematical model is again balanced by modifications of the stochastic model. 
 
Polynomial breakpoints 
 

In the project described the third step consists again of three different steps, i.e.: 
 1. Estimation of 1D-polynomial model per benchmark. 
 2. Estimation of 3D-polynomial model per selection benchmarks. 
 3. Evaluation of possible external height-information available. 

 
When evaluating the estimated time-dependent polynomials per benchmark, it become more 

and more apparent that such a polynomial could not accurately describe the behaviour of the 
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benchmarks which came under the influence of the mineral deposit extraction some time after the 
start of the exploration. Such  behaviour was described by higher order polynomials, whereas it was 
actually due to a break in the trend of the subsidence. This problem may be solved for allowing the 
polynomial function to have a so-called breakpoint, which is defined as: A point in time at which a 
benchmark, due to the mineral deposit extraction, enters the subsidence area. The present paper is 
mainly concerned with the estimation of breakpoints in 1D-polynomial models, i.e. polynomial 
breakpoints. 
 

Modelling polynomial breakpoints 
 

The estimation of polynomial breakpoints is a part of the procedure developed for establishing 
the most likely mathematical model, describing the subsidence behaviour of a specific benchmark in 
time. The procedure is based on the concept of least-squares estimation and multiplate hypothesis 
testing (Sedlák & Kunák, 1996). 
 
Hypothesis testing 
 

In general, the mathematical model under nullhypothesis may be modelled in terms of 
observation equations 
 
   H0  : E{ y } = Ax ;      D{ y } = Qy ,                                                      (1)           
where   E{ . }  is mathematical expectation; 
             y        is m-by-1 vector of observations; 
 A        is m-by-n design matrix; 
 x         is n-by-1 vector of unknowns; 
            D{ . }   is mathematical dispersion; 
 Qy      is m-by-n variance covariance matrix of the observations;  
 
and underlinement stands for stochasticity. Moreover, m equals the number of observations and n the 
number of unknowns. 
 
   The variability of the nullhypothesis may be tested against the widest possible alternative 
hypothesis, by means of the teststatistic 
 

                                                  T = $e * Qy
-1 $e  ,                                                         (2) 

 

where    is m-by-1 vector of least-squares corrections of the observations. $e
 

Under the nullhypothesis this teststatistic has a central distribution χ2 with m-n degrees of 
freedom. i.e. χ2 (m-n, 0). The teststatistic, Eq.(2), is known as the „overall model test“. 

In  case of a rejection of the nullhypothesis, one will try to detect the cause of rejection by 
formulating a (number of) possible alternative hypothesis. In general, the model under the alternative 
hypothesis may be written as a linear extension of the model under the nullhypothesis 
 

        Ha  : E{ y } = Ax + CL ;    D{ y } = Qy ,                                                (3) 
 
where   C   is m-by-q matrix; 
             L   is q-by-1 vector; 
 
and CLdescribes the assumed model error. The dimension of the linear extension of the functional 
model q may vary from q =1 to q =m-n. 
 

The validity of the alternative hypothesis may be tested by the teststatistic 
 
   Tq = $e * Qy

-1C [C*Qy
-1Q Q

$e y
-1C] -1 C*Qy

-1 $e  ,                                    
(4) 
 
in which Q e  is the covariance matrix of the least-squares residuals. Under the nullhypothesis the 
teststatistic 

$

Tq  has a central distribution χ2 with q degrees of freedom, i.e.  χ2 (q,0). 
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If q =1 the C-matrix reduces to a m-by-1 vector c, and vector L  reduces to a scalar, causing 

Eq.(4) to reduce to  
 

   T1 =(c* Qy
-1 $e  )2 (c* Qy

-1 Q  Q$e y
-1 c)-1                                                     (5) 

                                                         
which is described as χ2 (1,0) under the nullhypothesis. A well-known application of Eq.(5) is found in 
the method of data-snooping, where the data are checked for possible measurement errors by 
computing the so-called conventional alternative hypotheses. These hypotheses are of the form 
 
    ci* = [0 . . . 010 . . .] ,                                                 (6)
      
in which 1 is found at the position j. In general the data-snooping uses the w-teststatistic, which has a 
standard normal distribution under Ho  and equals the square-root of Eq.(5). 
 

In the Košice-Bankov case of estimation and testing it is custom to compute, next to the 
overall modell test all w-teststatistics for the conventional alternative hypotheses. In the present paper 
we will use all three types of tests, Eq.(2),(4) and (5). 
 
The mathematical model under Ho 
 

Given a certain benchmark, its height at the various epochs as computed after the stability 
analysis of the reference benchmarks from, together with their covariance matrix, the starting point for 
the evaluation of the benchmarks subsidence behaviour. The general form of a 1D time-dependent 
polynomials of order n for the benchmarks heights is given as 
 
 
   Hk = aotko + a1tk1 + a2tk2 + . . . +antkn ,                                                (7) 
 
where   Hk  is height of the benchmark as determined at epoch k; 
 ai    is unknown coefficient, i =0, . . ., n; 
 tki   is measurement time of epoch k to the power i. 
 

The mathematical model under the nullhypothesis assumes a linear subsidence, which is 
represented by a time.dependent polynomial of order 1. The assumption is based on the fact that in 
the Košice-Bankov case a large number of benchmarks shows a natural, linear subsidence. 
 
Alternative hypotheses considered  
 

In case of a rejection of the nullhypothesis a number of alternative hypotheses are to 
disposition. They are tested for their validity at the modelling subsidences. Alternative hypotheses 
follow out from three basic presumptions: 

 
 1. Height of the benchmark in one single epoch is incorrect.  
 2. The order of the polynomial should be increased by 1 or 2. 
 3. Extension of the polynomial with a breakpoint is necessary. 

 
Each one of the hypotheses considered may be written as a linear extension of the functional 

model under the nullhypothesis. 
 
 
 1. Heights of the benchmarks in one single epoch are incorrect (w-test). The alternative 
hypothesis considering the height of one benchmark Hj  to be erroneous equals in fact the 
conventional alternative hypothesis. Hence the linear extension of the functional model is given as 
 
 
            cL= [0 . . . 0 1 0 . . . 0]* L,                                                             (8) 
 
leading to a teststatistic of the form of Eq.(5). 
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 2. The order of the polynomial should be increased by 1 or 2 (01- or 02-test). From Eq.(7) it is 
immediately clear that extension of the functional model with an extra parameter is a linear extension. 
Hence the mathematical model under Ha for testing the significance of a higher order term is given by 
 
 

          H1           1   t1   t12  
             . .   .    .   
             . .   .           .                                        
             .   .   .    .                       
                                        a0  
     E    Hk      =   1   tk                               +        tk2                a2      ;    QH ,                                                             (9)                
             .    .   .        a1                       . 
             .             .   .                                  .  
             .             .   .                   .              
           Hp           1    tp               tp2 
 
 
in which QH  equals the covariance matrix of the benchmarks heights. This hypothesis leads to a 
teststatistic of the form of Eq.(5). 
 
 

The alternative hypothesis allowing two extra higher order terms is given as 
 
 

          H1           1   t1                         t12  t13  
            .              .   .               .     .   
            .              .   .                                  .     .                                   
            .   .   .                           .     . 
                                           a0                                                                        a2 
     E    Hk     =    1   tk                     +               tk2  tk3              ;  QH ,                      (10) 
            .              .   .         a1                                 .     .        a3 
            .              .   .               .     .                                   
            .              .   .               .     .                                      
           Hp           1   tp              tp2  tp3 
 
 
resulting in a teststatistic of the form of Eq.(4). In case the mathematical model under Ho  equals a 
polynomial of order n the linear extensions of the functional model will become 
 
                  
   cL=      t1n+1 . . . tkn+1 . . . tpn+1   *   an+1                               
     
                                                                                                                                       (11) 
  and                   t1n+1 . . . tkn+1 . . . tpn+1    *   an+1  
              CL =   
               t1n+2 . . . tkn+2 . . . tpn+2       an+2 
 
 
respectively. The test for an extension of the polynomial model with two higher order terms was added 
since it may occur that one extra parameter is not significant, whereas two parameters are. 
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 3. Extension of the polynomial with a breakpoint is 
necessary (B-test). For a mathematical formulation of the 
breakpoint hypothesis a number of assumptions need to 
be made. The restrictions follows from the type of 
polynomial functions that is searched for, which is 
illustrated in Fig.1. Here it is assumed that a breakpoint 
was detected at the point in time t(b). Although the point in 
time t(b) at which the breakpint may occur is in principle 
unknown, it is clear that before and after the breakpoint a 
different polynomial should be valid. 
 
Fig.1.   1D polynomial with breakpoint in time t(b). 
 

The assumptions are: 
 

 1. The polynomial order before the breakpoint is restricted to a maximum of one (n1 ≤ 1), 
which is also the case under the nullhypothesis. This assumption is based on the fact that a possibly 
natural subsidence in the Košice-Bankov case shows at the most a linear behaviour. 
 2. The polynomial order before the breakpoint does not exceed the polynomial order after the 
breakpoint, i.e. n2≥  n1. 
 3. The function is required to be continuous in its breakpoint, meaning that the function values 
of both polynomials before and after the breakpoint should be the same. 
 In order to simplify the formulae used, the polynomial time scale is redefined such that at the 
origin is translated to the breakpoint t(b), i.e. 
 
 

             t(k) - t(b)  
     tk =                  ,                                                                       (12) 
                                       t(p) - t(1) 

 
 
thus tb=0. The assumptions made allow us to write the polynomial after the breakpoint as a linear 
extension of the one before the breakpoint, i.e. 
 
 
             1  
                          Σ ai tki ,             if t(k) ≤ t(b) ( tk ≤ 0 ) 
          i=0 
      Hk  =                        ,                                   (13) 
           1                n2 
          Σ ai tki + Σ dai tki ,         if t(k) > t(b)   ( tk > 0 ) 
         i=0               i=1 
 
 
where   Hk  is benchmarks height as determined at epoch k; 
            n2   is  polynomial order after the breakpoint; 
            ai    are unknown polynomial coefficients before the breakpoint; 
            dai  is coefficient difference between the polynomial before and after  
                   the breakpoint; 
                   tk    is measurement time of epoch k in the polynomial time unit as           
                   defined above;                             
            t(k)   is point in time at which epoch k was measured. 
 

From Eq.(13) it follows that a breakpoint will be detected when a significant change in slope 
(da1) appears. Testing for the presence of a polynomial breakpoint may therefore be based on the 
following alternative hypothesis 

 
 

           H1           1   t1                     0  
             .  .   .               .        
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  .  .   .            .                                       
  .    .   .      .    
                        Hk           1  0         a0                0            
     E     Hk+1  =    1  tk+1              +    tk+1       da1    ,                                                     (14)                           
             .              .   .         a1           .  
             .              .   .      .                                  
             .              .   .                       .                                      
             Hp          1   tp      tp 
 
 
which is clearly a linear extension of the functional model under nullhypothesis, Eq.(7). In Eq.(14) it is 
assumed that the breakpoint appears at epoch k . Hence t(b)=t(k) and thus tk=0. The related teststatistic 
is of the form of Eq.(5). From Eq.(14) it follows that the breakpoint may not be detected in the first 
epoch (t(1)) or the last one (t(p)). Moreover, it is not possible to distinguish between a possible error in  
H1 or Hp and a breakpoint before the second or after the last but one epoch respectively. Therefore 
possible breakpoints can only be detected within the interval t(2)

 < t(b) < t(p-1). In the case of Košice-
Bankov subsidence, the interval is scanned for the most likely breakpoint by increasing t(b) with one or 
two years at a time and testing each related alternative hypothesis. 
 

Results of testing for polynomial breakpoints 
 
   As mentioned before the estimation of a polynomial breakpoint is a part of a procedure to determine 
the most likely polynomial model for the subsidence of a benchmark in time. Therefore, the resulting 
mathematical model may or may not include a polynomial breakpoint. 
 
Identification of a polynomial brakpoint 
 

The aim of the procedure is to arrive at a consistent mathematical model, i.e. both the 
functional and the statistic model. In short  the procedure is as follows. First a least-squares 
adjustment of the mathematical model under the nullhypothesis is performed. The validity of this 
model is tested by the application of the overall model test, given in Eq.(2).  
 

Depending on the test result, the next steps are following: 
 

 1. Accept Ho : The estimated slope-coefficient (a1) is tested for its significance. If the 
parameter is significant the functional model is replaced by a constant polynomial with implies stability 
of the benchmark considered. 
 2. Reject Ho : Test all alternative hypotheses as described above for their validity and 
determine the most likely alternative hypothesis. Depending on the most likely hypothesis selected, 
the following actions are taken: 
  a) w-test: Remove the observation concerned, i.e. the benchmark,s height at the 
epoch which was identified by the largest w-test value. 
  b) 01- or 02-test: Adapt the mathematical model under the selected alternative 
hypothesis to be the new mathematical model under the nullhypothesis. Possibly more parameters 
are needed to describe the benchmarks behaviour accurately. Hence, the nullhypothesis is again 
tested for its validity. In the case of rejection the alternative hypotheses mentioned before are once 
more tested. However, the test for a possible breakpoint is now excluded from the procedure. 
  c) B-test: Adapt a breakpoint at the epoch which was identified by the largest B-test 
value. The order of the polynomial before and after the breakpoint is now determined for each part 
separately. Hence, the procedure restarts for each part separately. However, the test for a possible 
breakpoint is now excluded from the procedure. 

After establishing the most likely functional mathematical model is balanced by modification of 
the stochastic model, by adaptation of the variances of the benchmark at all epochs. If the 
nullhypothesis is tested against a number of alternative hypotheses, which is often the case in 
practice, criteria are needed to select the most likely alternative hypothesis. In the present case all 
hypotheses considered lead to teststatistics that have as it is mentioned in Eq.(2), (4) and (5). 
 

First consider the case where the dimensions of the hypotheses considered are equal. In our 
procedure this occurs when all w-tests or when all B-tests are compared. Since those teststatiscs Ti 
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are all of the form of Eq.(5) and thus all have the same central distribution with one degree of freedom, 
i.e. 
 
    Ti ~χ2(1,0) ∀ i,                                                     (15) 
 
and the largest value implies the most likely alternative hypothesis. Hence, in this case the most likely 
alternative hypothesis is the one for which  
 
 
    Ti > Tj j∀ ≠ i,                                                                          (16) 
 
 
where the indices i and j refer to hypothesis i and j respectively. 
  

However, at a certain point in the procedure the most likely alternative hypothesis should be 
selected from a number of hypotheses with different dimensions. This is the case when it is necessary 
to discriminate between, for instance, the 01- and 02-tests. Although the related teststatistics χ2 are 
again all χ2 distributed, the number of degrees of freedom differs, i.e. we compare teststatistics of the 
form of Eq.(5) with teststatistics of the form of Eq.(4). Therefore the largest value does not 
automatically refer to the most likely alternative hypothesis.  

In order to deal with this problem in the present case, a practical solution may be found, 
comparing the test quotients which are defined as 

 
 
     T q

i /χ a
2 (qi,0),                                                (17) 

 
 
where T q

i is teststatistics of the form of Eq.(4), refering to the i-th alternative hypothesis; χ (qa
2

i,0)  is a 
critical value of the central χ2 distribution with qi degrees of freedom for a certain choice of ai. 
     

Here it should be noted that the test quotients may only be used if the significance levels ai  of 
the tests involved are matched through an equal power.Those test quotients that are less than 1 are 
not taken into account, since the hypothesis in question is certainly not more likely than the 
nullhypothesis. For the order test quotients it is assumed that the most likely alternative hypothesis is 
the one which is rejected strongest, i.e. differs most from 1. Hence, the most likely hypothesis is the 
one for which 
 
 
   T q

i /χ2 (qa i,0)>T q
j /χ a

2 (qj,0) ∀ j ≠ i.                                                         (18) 
 
 
 

Results in the Košice-Bankov case 
 

It will be clear that both polynomials with and without a breakpoint may result from the 
procedure described in the previous paragraph. In this section examples of estimated polynomials in 
the Košice-Bankov case are presented and discussed. In the following the test quotient belonging to 
the overall model test is denoted by OM-test. 

 
 

Benchmark No. 8 (Fig.2): The behaviour of this benchmark caused the original nullhypothesis to be 
rejected. The validation of the alternative hypotheses, as specified before, identified an extra 
parameter for the polynomial to be the most likely alternative hypothesis (Tab.1). After the adaptation 
of this alternative hypothesis as the new nullhypothesis, the overall model test value became 0.9733, 
which is clearly smaller than its critical value of 1.5479. Hence a quadratic polynomial model was 
accepted. 

 324



 
Acta  Montanistica  Slovaca     Ročník 1 (1996), 4, 317-328 

 
 
 
Point                          QUOTIENTS                              BREAKPOINT 
No.      w-test    OM-test     B-test     01-test    02-test         % 
 
 
   8      1.8247    0.7791     1.9952    2.1890    1.5206            0 
  23     3.2209    1.2746     3.8987    4.1597    2.8840            0 
  27     3.9802    1.8011     3.9793    4.6063    3.2251            0 
109     7.6910    2.2386     7.7961    4.3813    5.1463         100 
110     7.5002    2.1923     7.5004    4.0027    4.8225           90 
112     6.1754    2.0023     7.0129    4.1992    4.9026         100 
113     6.0701    1.9077     6.5099    4.0558    4.2159           70 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
Tab.1. Overview of testquo-tients 
. 
  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.2   Polynomial model - Bench-
mark No. 8. 
 

 
 
 
 
Benchmark No. 23 (Fig.3): The behaviour of this benchmark caused the original nullhypothesis to be 
rejected  as  well.  However,  in  this  case  the  most likely alternative hypothesis was determined to 
be  
theone which assumed two extra parameters for the polynomial, which is also clear from the test 
quotients. After the adaptation of this alternative hypothesis, the new nullhypothesis of a cubic 
polynomial was accepted. 
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Fig.3.  Polynomial model - 
Benchmark No. 23. 
 

 
Benchmark No. 27 (Fig.4): This benchmark has a imiliar subsidence development of the benchmark 
No.8. The post likely sufficient alternative hypothesis trans-formed to the nullhypothesis, its overall 
model test value became 0.7506, which compared to its critical value (1.5479), is clearly accepted for 
a cubic polynomial model. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.4. Polynomial model - Bench-
mark No. 27. 
 
 

 
Benchmark No. 109 (Fig.5): This benchmark is a tipical example of the breakpoint estimation (see 
table of testquotients) at the point in time of 1986 (autumn). After adapting the model including a 
polynomial breakpoint as the nullhypothesis, the order of the polynomial after the breakpoint was 
determined to be of the order two.  
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Fig.5.  Polynomial model - Bench-
mark No. 109. 
 

 
Benchmark No. 110 (Fig.6): The subsidence development of this benchmark indicates a breakpoint 
mostly (autumn 1987). The polynomial before the breakpoint can be accepted for a possibility of an 
alternative hypothesis partially; however, this fact fully excludes the nullhypothesis. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.6.  Polynomial model - Bench-
mark No. 110. 
 

 
 
 
Benchmark No. 112 (Fig.7): This benchmark is a clear breakpoint. The nullhypothesis with the 
polynomial determined to be of order two can be again considered of the nullhypothesis in time of 
1986÷1988. And the polynomial is determined to be of the order three after time of 1988. 
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Fig.7.  Polynomial model - Bench-
mark No. 112. 
 

 
 
Benchmark No. 113 (Fig.8): For this tenchmark the original nullhypothesis, assuming a linear 
subsidence, was accepted. The overall model teststatistics was determined to be of 0.4681 which is 
clearly smaller than the critical value of 0.8497. However, the first epoch (spring 1986) was considered 
as a breakpoint possibility. And the alternative hypothesis after the breakpoint was accepted as the 
polynomial of order two. 

 
Fig.8.  Polynomial model - Bench-
mark No. 113. 
 
 
 

Conclusions 
 

The examples of 
chosen benchmarks taken 
from the monitoring Košice-
Bankov station can give an 
overview of some resulting 
polynomial models, 
representing trends in the 
deformation developments 
over an extracted mine 
space. The presented theory 
of the  estimating the 
subsidence polynomial 
breakpoints follows out from 
a consideration of 1D 
deformation model of 

monitoring points. A similiar 3D deformation model analysis at the polynomial breakpoints can be 
taken into consideration. It will be the subject of  a future research of the estimated differencial 
polynomial points in the subsidences (Sedlák et al., 1996). 
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