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Mathematical modelling breakpoints
in the subsidences

Vladimir Sedlak’

Matematické modelovanie lomovych bodov
v poklesovych kotlinach
V prispevku je prezentovana teéria matematického modelovania polynomialnych lomovych
bodov pri analyze deformacnych charakteristik poklesovych kotlin. Teéria ur€ovania lomovych
bodov bola vyvinuta ako suc€ast kinematickych analyz horninového masivu dobyvacieho
loziskového pola magnezitu vo vychodoslovenskom regidne. Teoretické poznatky modelovania
su doplnené praktickymi vysledkami deformaénych merani in situ.
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Introduction

A gradual subsidences development at the KoSice-Bankov mine region in Slovakia was
minitored by geodetic measurements (levelling) from the beginning of mine underground activities in
the magnesite mineral deposit. The stage, so-called the static analysis from long-term geodetic
observations cumulated into every year periodical measurements can be indicated in the present time.
The analysis of time factors of the gradual subsidences development continuing with underground
exploitation allows a production of more exact model situations in each separate subsidence
processes, and especially it provides an upper degree in a prevence of deformations in the earth
surface (Knothe, 1984; Sedlak, 1992 a,b, 1993 a,b, 1994; Sedlak & Havlice, 1993).

A possibility of improving polynomial modelling subsidences is conditioned by the knowledge
to detect position of so-called breakpoints, i.e. the points in the earth surface in which the subsidence
border with a zone of breaches and bursts start to develope over the mineral deposit exploitation. It
means that the breakpoints determine a place of the subsidences where it occurs to the expressive
fracture of the earth continuous surface consistence. For this reason it is necessary to present some
theoretical knowledge and practical procedures from a long-term exploration in deformation
subsidence measurements at the magnesite mineral deposit mine field in the KoSice-Bankov region.

Research overview

Problems of mine damages in the earth surface, dependent on the underground mine
activities at the magnesite mineral deposit, did not receive a systematic research attention in Slovakia
till 1976. After there, the requirements for a scientific motivation in the subsidences development
following out from rising exploitations and from introducing progressive mine technologies were taken
in consideration. This scientific exploration in the subsidences must be supported by systematic
monitoring mine influences in the earth surface using precise geodetic methods.

The monitoring station project in the KoSice-Bankov case was designed and realized by the
research staff of the Department of Geodesy & Geophysics of the Technical University of KoSice in
1976 (Kunak et al., 1985). The first monitoring data were taken from this monitoring station in the
same year. The monitoring station is situated in the earth surface in
the KoSice-Bankov mine region near by the West shaft. The monitoring station is constructed from the
geodetic network of the reference points and objective ones situated in seven profiles.

Geodetic deformation analysis

The deformation analysis based on geodetic methods may be divided into four steps:
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1. Design of the geodetic monitoring network. First the monitoring network and an observation
scheme are designed such that requirements following from the anticipated deformation pattern and
the specified accuracy (precision and reliability) criteria are met.

2. Single-epoch analysis. The least-squares adjustment of the geodetic measurements in the
free network mode is performed assuming that no deformations have taken place during this epoch.
The main objective of this step is to establish a consistent mathematical model of the network,
resulting in adjusted coordinates with a corresponding quality description in terms of precision and
reliability.

3. Stability evaluation of reference points. Here a distinction should be made between
absolute and relative deformation maesurements. Absolute deformations are studied relative to a set
of points which are assumed to be stable whereas in the case of relative deformation measurements
no stable points are available.

If present, reference points will be checked for instabilities. The whole set of available
reference points throughout all epochs will be adjusted under the assumption that no deformation has
taken place. Statistical testing is performed for the detection and identification of unstable reference
points, which will be removed from the set. The final adjustment provides coordinates of the stable
reference points with respect to which deformations of the object points will be described.

4. Deformation analysis. In practice the deformation pattern is often described by a polynomial
model. Polynomial models in 1-, 2- or 3-dimensions (1D, 2D, 3D) are linear models and especially the
parameters of the lower order models have a distinct physical meaning. In the least-squares
adjustment the parameters of the mathematical model chosen are estimated and tested for their
significance. Possible modifications of the deformation model will be based on the test results.

In the case of multi-epoch analysis a distinction can be made between a static and kinematic
approach. In the case of static approach only two epochs are taken into consideration at the same
time. In the case of a kinematic approach all available epochs are taken into account. This allows the
detection of possible trends in the data, it allows the study of derivative functions such as velocity and
it allows improvement of the identification of possible errors in the measurement data. The
disadvantage of the kinematic approach, however, may be the large number of data to be processed.

1D deformation analysis from levelling networks

In accordance with the general phases of the geodetic deformation analysis the project at
hand was defined to contain the following phases:

1. Single epoch evaluation of the levelling data available.
2. Stability evaluation of reference benchmarks.
3. Estimation of the most likely deformation model.

Obviously the design step is no element of the project since we are dealing with existing
networks. The single epoch evaluation concentrates on the evaluation of the functional model, the
observational data and the stochastic model. By means of the integration of hypothesis testing,
including the outlier detection, and the variance component estimation a consistent mathematical
model is obtained.

In the second phase of the project the assumption in the functional model of stable reference
benchmarks is tested. Unstable benchmarks are removed from the set and will further be treated as
objective-points. After establishing the correct functional model the stochastic model may be improved
as well. Again a consistent mathematical model results.

The aim in the third phase is to arrive at the most likely mathematical model describing the
deformation pattern underlying the data. The functional model part is restricted to 1D- or 3D-
polynomials, which are either a function of time or a function of both positions (x,y) and time. The
mathematical model is again balanced by modifications of the stochastic model.

Polynomial breakpoints
In the project described the third step consists again of three different steps, i.e.:
1. Estimation of 1D-polynomial model per benchmark.
2. Estimation of 3D-polynomial model per selection benchmarks.
3. Evaluation of possible external height-information available.

When evaluating the estimated time-dependent polynomials per benchmark, it become more
and more apparent that such a polynomial could not accurately describe the behaviour of the
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benchmarks which came under the influence of the mineral deposit extraction some time after the
start of the exploration. Such behaviour was described by higher order polynomials, whereas it was
actually due to a break in the trend of the subsidence. This problem may be solved for allowing the
polynomial function to have a so-called breakpoint, which is defined as: A point in time at which a
benchmark, due to the mineral deposit extraction, enters the subsidence area. The present paper is
mainly concerned with the estimation of breakpoints in 1D-polynomial models, i.e. polynomial
breakpoints.

Modelling polynomial breakpoints
The estimation of polynomial breakpoints is a part of the procedure developed for establishing
the most likely mathematical model, describing the subsidence behaviour of a specific benchmark in
time. The procedure is based on the concept of least-squares estimation and multiplate hypothesis
testing (Sedlak & Kunak, 1996).
Hypothesis testing

In general, the mathematical model under nullhypothesis may be modelled in terms of
observation equations

Ho :E{y}=Ac; D{y}=Q,, (1)
where E{.} is mathematical expectation;

y is m-by-1 vector of observations;

A is m-by-n design matrix;

X is n-by-1 vector of unknowns;

D{.} is mathematical dispersion;
Q, is m-by-n variance covariance matrix of the observations;

and underlinement stands for stochasticity. Moreover, m equals the number of observations and n the
number of unknowns.

The variability of the nullhypothesis may be tested against the widest possible alternative
hypothesis, by means of the teststatistic

= é*q’¢, (2)

where é is m-by-1 vector of least-squares corrections of the observations.

Under the nullhypothesis this teststatistic has a central distribution y’with m-n degrees of
freedom. i.e. °(m-n, 0). The teststatistic, Eq.(2), is known as the ,overall model test".

In case of a rejection of the nullhypothesis, one will try to detect the cause of rejection by
formulating a (number of) possible alternative hypothesis. In general, the model under the alternative
hypothesis may be written as a linear extension of the model under the nullhypothesis

Ha :E{y}=A+CL; D{y}=Q, 3)

where C is m-by-q matrix;
L is g-by-1 vector;

and CLdescribes the assumed model error. The dimension of the linear extension of the functional
model g may vary from g =7 to g =m-n.

The validity of the alternative hypothesis may be tested by the teststatistic

I, = ¢* Q’c [rcq’'qe.e’'cg T cole |
(4)

in which Q , is the covariance matrix of the least-squares residuals. Under the nullhypothesis the
teststatistic T, has a central distribution 7 with g degrees of freedom, i.e. 7 (q,0).
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If g =1 the C-matrix reduces to a m-by-17 vector ¢, and vector L reduces to a scalar, causing
Eq.(4) to reduce to

Ti=c*Q"¢ )’ (c*Q," Q, Q¢ (5)

which is described as #° (7,0) under the nullhypothesis. A well-known application of Eq.(5) is found in
the method of data-snooping, where the data are checked for possible measurement errors by
computing the so-called conventional alternative hypotheses. These hypotheses are of the form

¢*=[0...010..], (6)

in which 17 is found at the position j. In general the data-snooping uses the w-teststatistic, which has a
standard normal distribution under H, and equals the square-root of Eq.(5).

In the KoSice-Bankov case of estimation and testing it is custom to compute, next to the
overall modell test all w-teststatistics for the conventional alternative hypotheses. In the present paper
we will use all three types of tests, Eq.(2),(4) and (5).

The mathematical model under H,

Given a certain benchmark, its height at the various epochs as computed after the stability
analysis of the reference benchmarks from, together with their covariance matrix, the starting point for
the evaluation of the benchmarks subsidence behaviour. The general form of a 1D time-dependent
polynomials of order n for the benchmarks heights is given as

Hk = aotko + a1tk1 + agtk2 +... +a,,tk" , (7)
where Hj is height of the benchmark as determined at epoch k;

a; is unknown coefficient, i =0, . . ., n;

t! is measurement time of epoch k to the power i.

The mathematical model under the nullhypothesis assumes a linear subsidence, which is
represented by a time.dependent polynomial of order 7. The assumption is based on the fact that in
the KoSice-Bankov case a large number of benchmarks shows a natural, linear subsidence.
Alternative hypotheses considered

In case of a rejection of the nullhypothesis a number of alternative hypotheses are to
disposition. They are tested for their validity at the modelling subsidences. Alternative hypotheses
follow out from three basic presumptions:

1. Height of the benchmark in one single epoch is incorrect.
2. The order of the polynomial should be increased by 7 or 2.
3. Extension of the polynomial with a breakpoint is necessary.
Each one of the hypotheses considered may be written as a linear extension of the functional

model under the nullhypothesis.

1. Heights of the benchmarks in one single epoch are incorrect (w-test). The alternative
hypothesis considering the height of one benchmark H; to be erroneous equals in fact the
conventional alternative hypothesis. Hence the linear extension of the functional model is given as

cL=[0...010...0"L, (8)

leading to a teststatistic of the form of Eq.(5).
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2. The order of the polynomial should be increased by 1 or 2 (01- or 02-test). From Eq.(7) it is
immediately clear that extension of the functional model with an extra parameter is a linear extension.
Hence the mathematical model under H, for testing the significance of a higher order term is given by

Hi

H,

1 4

1t

t,?

t2

t,?

|:a2:| ; Qu, 9)

in which Q4 equals the covariance matrix of the benchmarks heights. This hypothesis leads to a
teststatistic of the form of Eq.(5).

The alternative hypothesis allowing two extra higher order terms is given as

H,

H,

1t

1t

ao

ai

t? t°

; QH’ (10)

as

resulting in a teststatistic of the form of Eq.(4). In case the mathematical model under H, equals a
polynomial of order n the linear extensions of the functional model will become

and

cL=

n+1
b

n+1
T

n+2
B A

n+1
tP

n+t |
-t

n+2
-t

an+1

an+2

(11)

respectively. The test for an extension of the polynomial model with two higher order terms was added
since it may occur that one extra parameter is not significant, whereas two parameters are.
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3. Extension of the polynomial with a breakpoint is
necessary (B-test). For a mathematical formulation of the
breakpoint hypothesis a number of assumptions need to
be made. The restrictions follows from the type of

R EREAKPOINT polynomial functions that is searched for, which is
: illustrated in Fig.1. Here it is assumed that a breakpoint
I was detected at the point in time #”. Although the point in
i time t” at which the breakpint may occur is in principle
i unknown, it is clear that before and after the breakpoint a
|
|
I
I
|

different polynomial should be valid.
¢ (b] Fig.1. 1D polynomial with breakpoint in time .

The assumptions are:

1. The polynomial order before the breakpoint is restricted to a maximum of one (n; < 1),
which is also the case under the nullhypothesis. This assumption is based on the fact that a possibly
natural subsidence in the KoSice-Bankov case shows at the most a linear behaviour.

2. The polynomial order before the breakpoint does not exceed the polynomial order after the
breakpoint, i.e. n,> n;,

3. The function is required to be continuous in its breakpoint, meaning that the function values
of both polynomials before and after the breakpoint should be the same.

In order to simplify the formulae used, the polynomial time scale is redefined such that at the
origin is translated to the breakpoint t? ie.

{0 _ o)
= —— 12
T (12

thus t,=0. The assumptions made allow us to write the polynomial after the breakpoint as a linear
extension of the one before the breakpoint, i.e.

r

1 .
Za; te ift" <t <0)
f=
Hy = , (13)
‘Z(;a,‘ tkl +.21da,- tk’, ift(k)>t(b) (tk > 0)
i= =
g

where H, is benchmarks height as determined at epoch k;
n, is polynomial order after the breakpoint;
a; are unknown polynomial coefficients before the breakpoint;
da; is coefficient difference between the polynomial before and after
the breakpoint;
t, is measurement time of epoch k in the polynomial time unit as
defined above;
t* s point in time at which epoch k was measured.
From Eq.(13) it follows that a breakpoint will be detected when a significant change in slope
(das) appears. Testing for the presence of a polynomial breakpoint may therefore be based on the
following alternative hypothesis

H; 1 4 0
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Hy 10 [a 0

E Hur = 1 by L |:C/31:|, (14)
. . ai .
H, 1 t t

which is clearly a linear extension of the functional model under nullhypothesis, Eq.(7). In Eq.(14) it is
assumed that the breakpoint appears at epoch k. Hence t”=t* and thus t,=0. The related teststatistic
is of the form of Eq.(5). From Eq.(14) it follows that the breakpoint may not be detected in the first
epoch (t( ) or the last one (t") Moreover, it is not possible to distinguish between a possible error in
H; or H, and a breakpoint before the second or after the last but one epoch respectively. Therefore
pOSSIble breakpoints can only be detected within the interval % < t* <t |n the case of Kosice-
Bankov subsidence, the interval is scanned for the most likely breakpoint by increasing t* with one or
two years at a time and testing each related alternative hypothesis.

Results of testing for polynomial breakpoints

As mentioned before the estimation of a polynomial breakpoint is a part of a procedure to determine
the most likely polynomial model for the subsidence of a benchmark in time. Therefore, the resulting
mathematical model may or may not include a polynomial breakpoint.

Identification of a polynomial brakpoint

The aim of the procedure is to arrive at a consistent mathematical model, i.e. both the
functional and the statistic model. In short the procedure is as follows. First a least-squares
adjustment of the mathematical model under the nullhypothesis is performed. The validity of this
model is tested by the application of the overall model test, given in Eq.(2).

Depending on the test result, the next steps are following:

1. Accept H, : The estimated slope-coefficient (a;) is tested for its significance. If the
parameter is significant the functional model is replaced by a constant polynomial with implies stability
of the benchmark considered.

2. Reject H, : Test all alternative hypotheses as described above for their validity and
determine the most likely alternative hypothesis. Depending on the most likely hypothesis selected,
the following actions are taken:

a) w-test: Remove the observation concerned, i.e. the benchmark's height at the
epoch which was identified by the largest w-test value.

b) 01- or 02-test: Adapt the mathematical model under the selected alternative
hypothesis to be the new mathematical model under the nullhypothesis. Possibly more parameters
are needed to describe the benchmarks behaviour accurately. Hence, the nullhypothesis is again
tested for its validity. In the case of rejection the alternative hypotheses mentioned before are once
more tested. However, the test for a possible breakpoint is now excluded from the procedure.

c) B-test: Adapt a breakpoint at the epoch which was identified by the largest B-test
value. The order of the polynomial before and after the breakpoint is now determined for each part
separately. Hence, the procedure restarts for each part separately. However, the test for a possible
breakpoint is now excluded from the procedure.

After establishing the most likely functional mathematical model is balanced by modification of
the stochastic model, by adaptation of the variances of the benchmark at all epochs. If the
nullhypothesis is tested against a number of alternative hypotheses, which is often the case in
practice, criteria are needed to select the most likely alternative hypothesis. In the present case all
hypotheses considered lead to teststatistics that have as it is mentioned in Eq.(2), (4) and (5).

First consider the case where the dimensions of the hypotheses considered are equal. In our
procedure this occurs when all w-tests or when all B-tests are compared. Since those teststatiscs T'
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are all of the form of Eq.(5) and thus all have the same central distribution with one degree of freedom,
i.e.

T ~A(1,0Vi (15)

and the largest value implies the most likely alternative hypothesis. Hence, in this case the most likely
alternative hypothesis is the one for which

T>T Vj#i (16)

where the indices i and j refer to hypothesis i and j respectively.

However, at a certain point in the procedure the most likely alternative hypothesis should be
selected from a number of hypotheses with different dimensions. This is the case when it is necessary
to discriminate between, for instance, the 071- and 02-fests. Although the related teststatistics ;(2 are
again all ;(2 distributed, the number of degrees of freedom differs, i.e. we compare teststatistics of the
form of Eq.(5) with teststatistics of the form of Eq.(4). Therefore the largest value does not
automatically refer to the most likely alternative hypothesis.

In order to deal with this problem in the present case, a practical solution may be found,
comparing the test quotients which are defined as

T, /7, (,0), (17)

where l'; is teststatistics of the form of Eq.(4), refering to the i-th alternative hypothesis; Zi (9,0) is a
critical value of the central ;(2 distribution with g; degrees of freedom for a certain choice of a;.

Here it should be noted that the test quotients may only be used if the significance levels a; of
the tests involved are matched through an equal power.Those test quotients that are less than 1 are
not taken into account, since the hypothesis in question is certainly not more likely than the
nullhypothesis. For the order test quotients it is assumed that the most likely alternative hypothesis is
the one which is rejected strongest, i.e. differs most from 7. Hence, the most likely hypothesis is the
one for which

T, 17, (@.0>T) Iy, (q,0)Vj#=i. (18)

Results in the KoSice-Bankov case

It will be clear that both polynomials with and without a breakpoint may result from the
procedure described in the previous paragraph. In this section examples of estimated polynomials in
the KoSice-Bankov case are presented and discussed. In the following the test quotient belonging to
the overall model test is denoted by OM-test.

Benchmark No. 8 (Fig.2): The behaviour of this benchmark caused the original nullhypothesis to be
rejected. The validation of the alternative hypotheses, as specified before, identified an extra
parameter for the polynomial to be the most likely alternative hypothesis (Tab.1). After the adaptation
of this alternative hypothesis as the new nullhypothesis, the overall model test value became 0.9733,
which is clearly smaller than its critical value of 1.5479. Hence a quadratic polynomial model was
accepted.
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Point QUOTIENTS BREAKPOINT
No. w-test OM-test B-test 01-test 02-test %

8 1.8247 0.7791 1.9952 2.1890 1.5206 0
23 32209 1.2746 3.8987 4.1597 2.8840 0
27 3.9802 1.8011 3.9793 4.6063 3.2251 0
109 7.6910 2.2386 7.7961 4.3813 5.1463 100
110 7.5002 2.1923 7.5004 4.0027 4.8225 90
112 6.1754 2.0023 7.0129 4.1992 4.9026 100
113 6.0701 1.9077 6.5099 4.0558 4.2159 70

Tab.1. Overview of testquo-tients

PROFILE: O, BENCHMARK: No. 8

(mm m]

<;383. 939m. 0. S,

=3

1
(=1

BREAKPOINT: O %

-0571

Denivelation of height

1976 1980 1985 ' . . ' 19'90 ' Fig.2  Polynomial model - Bench-
N mark No. 8.

Year of cbservation

Benchmark No. 23 (Fig.3): The behaviour of this benchmark caused the original nullhypothesis to be
rejected as well. However, in this case the most likely alternative hypothesis was determined to
be

theone which assumed two extra parameters for the polynomial, which is also clear from the test
quotients. After the adaptation of this alternative hypothesis, the new nullhypothesis of a cubic
polynomial was accepted.
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PROFILE: 0O, BENCHMARK: No. 23

0,1

[mm.m ']

‘; 379.288m.0.s.

-01 t

BREAKPOINT: O %

Denivelation of height

-05

Fig.3. Polynomial model -

1976 1980 1985 ’ ’ . 1990
Benchmark No. 23.

_—
Year of observation

Benchmark No. 27 (Fig.4): This benchmark has a imiliar subsidence development of the benchmark
No.8. The post likely sufficient alternative hypothesis trans-formed to the nullhypothesis, its overall
model test value became 0.7506, which compared to its critical value (1.5479), is clearly accepted for
a cubic polynomial model.

PROFILE: O, BENCHMARK: No. 27

_1]

[mm.m

0.1
$375.923m0.5.

-01

Denivelation of height

sos b BREAKPOINT: O % .

Fig.4. Polynomial model - Bench-
mark No. 27.

1976 1980 1985 1990

——
Year of observation

Benchmark No. 109 (Fig.5): This benchmark is a tipical example of the breakpoint estimation (see
table of testquotients) at the point in time of 1986 (autumn). After adapting the model including a
polynomial breakpoint as the nullhypothesis, the order of the polynomial after the breakpoint was
determined to be of the order two.
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PROFILE: 1, BENCHMARK: No. 109

Imm.m7]

01

0 I Py N - - $400.417m.0.5.

-0_1: 1

Denivelation of height

BREAKPOINT: 100 %

-0.5

1985 1990 Fig.5. Polynomial model - Bench-

—_—
Year of observation mark No. 109.

1976 1980

Benchmark No. 110 (Fig.6): The subsidence development of this benchmark indicates a breakpoint
mostly (autumn 1987). The polynomial before the breakpoint can be accepted for a possibility of an
alternative hypothesis partially; however, this fact fully excludes the nullhypothesis.

PROFILE: 1, BENCHMARK: No. 110

01r

[mm.m )

¥ 398.862m.0.5

-0

Denivelation of height

o5 b BREAKFOINT: 90 %

1976 1980 1985 1990 Fig.6. Polynomial model - Bench-

Year of observation mark No. 110.

Benchmark No. 112 (Fig.7): This benchmark is a clear breakpoint. The nullhypothesis with the
polynomial determined to be of order two can be again considered of the nullhypothesis in time of
1986-+-1988. And the polynomial is determined to be of the order three after time of 1988.
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PROFILE: 1, BENCHMARK: No.112

.E 01}
£
= 396.231Im.o.s.
2 0 ————s sk
Y
2 01 b i
% :
g a) |
o
s b)
&
= BREAKFOINT: a) 100 %
& k) 80 %
-05
41'0 -
" .
1976 1980 1985 1990
—_—

Year of cbservation

Fig.7. Polynomial model - Bench-
mark No. 112.

Benchmark No. 113 (Fig.8): For this tenchmark the original nullhypothesis, assuming a linear
subsidence, was accepted. The overall model teststatistics was determined to be of 0.4681 which is
clearly smaller than the critical value of 0.8497. However, the first epoch (spring 1986) was considered
as a breakpoint possibility. And the alternative hypothesis after the breakpoint was accepted as the

polynomial of order two.

PROFILE: 1, BENCHMARK: No. 113

Immm’]

01

& 395.054m.o.s.

. T

Denivelation of height

BREAKPOINT: 70 %
-0.5

1976 1980 1985 1990
-
Year of observation

Fig.8. Polynomial model - Bench-
mark No. 113.

Conclusions

The examples of
chosen benchmarks taken
from the monitoring KoSice-
Bankov station can give an
overview of some resulting
polynomial models,
representing trends in the
deformation  developments
over an extracted mine
space. The presented theory
of the estimating the
subsidence polynomial
breakpoints follows out from
a consideration of 1D
deformation model of

monitoring points. A similiar 3D deformation model analysis at the polynomial breakpoints can be
taken into consideration. It will be the subject of a future research of the estimated differencial

polynomial points in the subsidences (Sedlak et al., 1996).
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