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Mathematical model of thermal aggregates

Imrich Pokorny " a Karol Kostir '

Matematicky model tepelnych agregatov

Tepelné agregaty mdézme charakterizovat jako priemyselné pece s velkou spotrebou
energie. Jednou z moznych ciest znizenia spotreby energie je optimalizacia a priebezné
riadenie priemyselnych tepelnych agregatov pomocou simulaénych modelov. Vychodiskom pre
tvorbu simulaénych modelov je matematicky model. Matematické modelovanie tepelnych
procesov je =zalozené na rieSeni parcialnych diferencidlnych rovnic a nelinearnych
algebraickych rovnic popisujucich zakladné procesy prenosu tepelnej energie.

V prispevku je popisana zakladna metodika tvorby matematického modelu zdénovou
metddou vratane efektivneho rieSenia. Prinosom prispevku je rozpracovanie analytického
postupu rieSenia nelinearneho systému bilanénych rovnic, ktorého pouZitie zna¢ne urychluje
priebeh simulacie v porovnani s numerickym rieSenim.

Introduction

Industrial furnaces belong to the group of the biggest appliances of energy and their heating
regime influence of quality of metallurgical semi-products. For this reason it is necessary to optimize
the design of heat aggregates. One of effective ways to design a new heat aggregate or to reconstruct
the old heat aggregate is simulation (Dvofacek et al., 1990). The creation of simulation models
requires high-professional knowledge of the furnace’s heattechnics and considerably programmable
capacity. For the creation of simulation models is needed typically long time, which is often in
contradiction with the requirements of users. This contradiction leads to abandoning traditional
simulation models as effective tool to construct heat aggregates.

Mathematical models of processes play an important role more and more in our time and they
have a very important place as a software of Automated System of Cointrol of Technological
Processes (ASC TP). We can realise the control of processes more effectively because of the
predicting property of the model. The purpose was to obtain the mathematical model of heating of
batches in such a way that it makes possible optimisation of heating.

As a fuel we can use a mixed gas, which is composite by earth gas, coke gas and gas from
blast-furnace. Input of fuel is shown on the Fig. 1 as a vertical arrow. The worked area of furnace we

divided on the smaller part - modules. There
l P are usually two modules together - top and
bottom. We suppose the homogenity of
processes in module. Then e.g. the
temperature of fire and walls of furnace is
constant in module. In the module each batch
e — is described by one-dimensional thermal field,
1% if it is possible.
<

Fig.1. Scheme of pairs of modules.

Model of combustion

By stechiometric calculations we can
define structure and quantity of fuel in the
modules. Volume flow of combustion products
in the i-th module can be given by following
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equations:

Vi =m-F

s Tt kl(i+l)V(i+1) +k

N

260V i=1,...,np (1)

where m - quantity of fuel,
P - volume flow of fuel [ m3.s™’ ]
V'S - volume of combustion products
kl(i) ’ kZ(t‘)
J; - order number of corresponding top module to i-th module
np - number of modules.

- coefficients modifications of quantity (may be 0)

Detailedly the streaming is described in (Strakos et al., 1997).
Model of heat radiation and convection
We divided i-th module to n(i) zones. Namely b(i) batch surfaces , c(i) wall surfaces, f(i)
fictitious zones and one volume zone (n(i)=b(i)+c(i)+f(i)+1). In each zone we solve the heat

transmission by radiation and by convection by the following expressions.

Resulting flow by radiation in j-th zone of i-th module is (Doréak, 1987)

n(i)
; QV(,,,) - QVw) 'Z(i)
Oy = a) Ay = Vi) (W] (2)
z A(zﬁl) - A(m‘) .Z(,.)
I=1
where
4 Sin-Eip pre j=1,...,n()—1 s
(.7) 4.V, .K, pre j=n(i)
factor of correction is
n(i)
z A(z',.i)
7 = j=1
(i) ~ n()-1 'Q(i>
S(i,j)
j=1
proper radiation flow is
_ 4
OVipy =0-Ti A [W]
and proper convection flow is
Qi = “'(T(i,lo - T(uj))-S(f,_/) (3)

for i=1,....,np, j=1,..,n@G)-1, k=n()
where i - index of module, j - index of zone

(j=1,...,b(i) - batches, j=b(i)+1,...,b(i)+c(i) - walls,
j=b(i)+c(i)+1,...,b(i)+c(i)+f(i) - fictive zones, j=n(i) - fuel)
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S - area of zone [mz]

V - volume of zone [m3]

K - absorptive coefficient [m’l]
¢ - radiation

O - adaptive coefficient
o - Stefan-Boltzman’s constant [W.m_2 K™

T - thermodynamic temperature  [° K]

a - coefficient of heat transfer by convection [W.m_2 .K_l] i

Model heat conduction

We can obtain thermal field of heat batches for j=1,...,b(i) by solving of system of Fourier
equation of heat conduction

6( at(i,k))

(i,k)

Ot 4y City-Puik) B X i 1y
ot OX i 1)

for i=1,....,np, k=1,...,b(7) (4)

in the case of combined boundary conditions

Qs(z’,k) + Qk(i,k) B at(i,k)
A (N 5%
St OX(; 4y

Xixn =0 intop modules, k=1,...,b(i)

for
Xip = h(i’k) in bottom modules, k& =1,...,b(7)

respectively

Ot x)
(i) Ox 0,

- =0 for x,; =h;,, ifbatchisin contact by real zone about some temperature

Thermal field of walls we obtain as a solution of stationer equation of heat transfer in stabilized heat
regime

G
=0 for i=Lnp, k=b()+ L) +e() (5)

in the case of combined boundary conditions

Qs(i,k) + Qk(i,k) _ at(i,k)

-
(ik)*
S(i,k) Oox

for x,,, =0 i=L..,np,k=b@{)+1,...,b(1) +c(i)
(i.k)

ot
(i,k)
O(‘o(t(i,k) - to) = _}L(i,k)' O

for X, =hyp i =byesnp, k= b(i)+1,...,b(0) + (i)
(i,k)
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where ¢ - specific heat capacity of the batch [J. kg_l .K_l]
A - mean heat conductivity of the batch [W.m_1 .K_l]
p - density [kg.m’3]
o, - coefficient of heat transfer from external surface into surroudings [W.m_z.K_l]

t - temperature in degree of Celsius [ C]
t, - temperature of environs  [°C]

Balance of energy

From law of maintenance of energy follows the equation of balance of energy

P(i)'H+ Vp(i) 'cp(i)'tp(i) + Vv(i) 'Cv(i)'tv(i) + Vs(i+1) 'C(i+l)'t(i+l,n(i+l)) - Vs(i) -C(i)-f(i,,,(i)) -
b(i)+c(i) ©)
- z Qs(i,k) + Qk(,-,k)) =0 for i=1,...,np

where Vp, V. - volume flow of fuel, air

¢, C,, G- specific heat capacity of combustion products, fuel, and combustion air.

We obtain after modifications from the equation of balance of energy a fourth order equation with the
unknown variable x =¢; ., (atemperature):

ax*+dx+e=0 (7)
resp.
ax*+bx’+cx’+d.x+e=0 (8)

These coefficients in a real situations are:

a - negative and its place value is 10°

b - negative and its place value is 10, resp. 0,
c - positive and its place value is 107, resp. 0,
d - negative and its place value is 10°,

e - positive and its place value is 10",

We can solve these type of equation by different ways (by numerical methods see e.g.
(Lanczos, 1961), (Pavlus et al., 1991) and (Rektorys, 1988), or by exact ways see e.g. (Kuros, 1971)
and (Rektorys, 1988)). For instance by iteration, but in a general case we can not guarantee
convergence of this process. The authors of (Pavlus et al., 1991, p. 46) show a short analysis of such
situation. The exact algebraic solution by radicals by comment 1 from (Rektorys, 1988, p. 69) is not
very good for the numeric solution of the equation. Methods, which are shown in the following
literature (Kuros, 1971, pp. 239-240 and Lanczos, 1961, pp. 36-37) we can not use directly because
the coefficients, which we obtain during the solution are very big and hence these coefficients have
not legal representation of value on computers. This is because of the big difference between the
place value of coefficients a a e. After correction of our coefficients we can use methods from
(Kuros, 1971 pp. 239-240).

We divide the equation (8) by coefficient a (a # 0) and we make the following substitution

b
=x+—.
y=x 4a
After the substitution we have:
y4+P.y2+Q.y+R=O , 9)
resp.
2
, P y : P
y +2+s —12.5.y"=0.y+|s +P.s—R+ 4 =0. (10)
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The basic idea is to obtain full quadratic expression in the square brackets by choosing the s . It will
be only the case when s will be a solution of following equation:

P2
Q2—4.2.S.(S2+P.S—R+Tj=0. (11)
Let s, be a solution of the equation (11), then we can rewrite the equation (10) .

2
L) - ( _gj _
(y +2 +, 2.s,. 4, =0. (12)

Because our coefficients are specific (comment 2) we have s, >0 and hence from the equation
(12) we obtain the following two quadratic equations

P 0
2.8, y+| =45, +—F—|=0,
Y %Y [2 %7 2.soj

which has only two complex solutions and

P 0
4 y2.5, . y+| =+, — =0,
Y K (2 %7 2.SJ

which has one positive and one negative equation root. Our solution will be this positive solution:

2.
- 2.SO+\/Q—2.SO—2.P
\2.8,

2

y:

b

and hence x=y —4— is our temperature.
.a

Now we analyse the solution of the equation (11) . After modification we have

P2 2
s3+P.s2+(—— ).S—Q_= . (13)

4
If we can find solution of this equation by computer we have a problem especially in this part of
solution because during the solution there are coefficients where their place order are 10”. And
hence we normalise our equation by substitution s=7v.E, where E is auxiliary coefficient.

After that substitution and divided the equation by E we obtain
PZ
——R
P 4 Q

r—yT+ -
y Ey E2 y 8.E2

=0. (14)

We choose E such that the maximum of absolute value of coefficients of equation (14) has the
place value 1.

We canput E = max{|P|,\/m,%/Q2 }
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P
After the substitution y =0 ——— the equation (14) takes the following form

3E
8 +P.8+0 =0. (15)
Based on the specifics of the coefficients of the equations (7) resp. (8) the expression
2 3
P
DI = %+? and the coicient F} are positive and hence only one real root of the equation (15) is

5= o -2 i + &

—(5 ijE
S, = 3.E. .

There are 3 situations in generally in the solution of the equation (15) : DI/=0, DI<O and
DI>0. In each case there will be a desirable real root of the equation (15). In our case D/>0 and
hence we do not analyse other situations.

and

The solution of the model was realised for pushing furnace. (Kostur, K.& Pokorny, I., 1990).
Conclusion

In spite of some simplifications with our model we can simulate the process of heating for the
different technologic properties (input power, performance, structure of fuel, ...). We can use this
model great part in the following two basic areas:

1. For the finding the optimal heating from point of view minimise the consumption of fuel on
conditions to have some temperature of batches and difference of temperature of material after
finishing the heating.

2. For the projection, or reconstruction of thermal aggregate. For the simulation of the different
situations of constructions we can choose the best variant of them.
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