Petrograficko-mineralogická analýza uhlia po biologickom lúhovaní

Zlatica Machajová¹, Ivana Sýkorová², Daniel Kupka¹ & Dana Čurillová¹

Petrographical and mineralogical analysis of coal after biological leaching

For coal utilization the sulphur content is a decisive parameter for the quality of the coal. In many countries clean coal technologies have to be applied on the basis of regulations concerning fuel quality and emission standards for dust, CO, SO₂ and NO_x in the flue gas. It becomes quite obvious that it is always preferable to keep the sulphur levels in coal at a minimum. Bacterial oxidation of the sulphur present in coal could well be thought of as an effective alternative.

Desulphurization by bacteria Thiobacillus ferrooxidans was applied to coal sample from Sokolov mine. Bacteria growing in batch culture on ferrous iron at initial pH 1.6 were harvested at the later growth phase. The ferric iron precipitates were separated from the cells by centrifugation and the rest medium by membrane filtration. Cell pellet captured on the filter was washed by hydrochloric acid and distilled water and finally suspended in fresh Waksmann & Joffe medium. The medium was previously acidified by $5M H_2SO_4$ to pH 2. Initial concentration of sulphates in medium was 1.8 g L^{-1} . Desulphurization of coal was studied in a stirred batch reactor at 10% w/v pulp density in diluted H_2SO_4 at pH = 2.

The effect of bacterial leaching on mineral and organic matter of coal was followed by optical microscopy. Petrographic evaluation of the coal matter samples consisted of the determination of reflectance of gelified huminite macerals (R_0), determination of maceral group contents of huminite, liptinite, inertinite and determination of the mineral content with emphasis on the various forms of iron sulphides. The sample examined were brown coal with higher liptinite and pyrite contents. The huminite reflectance of 0,33 % is corresponding to the lignitic metatype. Huminite concentration is 65,7 % and is the most abundant maceral group. The maceral ulminite and densinite contributes to the high huminite content. The concentration of attrinite, who be pass to liptodetrinite, textinite, gelinite and corpohuminite contents does not exceed 5 %. The maceral composition of liptinite was determined by a fluorescence measurement. The remaining liptinite and inertodetrinite is low (4,5 %).

Coal contains sulphur in inorganic form (mainly pyrite and marcasite) and sulphur in organic form. Biological lixiviation has caused relatively significant change in FeS_2 , in some cases full or part elimination of dispersed framboids at mineralised detrite as well as at huminite macerals resulting in empty holes and hudge FeS_2 grains were slightly disintegrated at the surface or dike - pyrite was relased irregularly after lixiviation.

Key words: Thiobacillus ferrooxidans, petrographical and mineralogical analysis.

Úvod

Uhlie je stále zaujímavý zdroj energie, avšak z aspektu ochrany životného prostredia je potrebné riešiť jeho základný problém, ktorým je odstránenie sírnych zlúčenín. Je preto aktuálne zaoberať sa okrem klasických metód odsírovania i výskumom nových ekologicky nezávadných metód. Jednou z nich je i bakteriálne lúhovanie uhlia. Biologickou desulfurizáciou uhlia sa zaoberal celý rad autorov (Dugan et al., 1978; McCrady & Zentili, 1985; Dogan, 1992). Pri nej sa thiobaktérie sa využívajú na rozklad sulfidických minerálov (pyrit, markazit, arzenopyrit, realgár, auripigment), takže týmto spôsobom sa znižuje obsah síry a arzénu v uhlí v anorganickej forme.

Oxidácia pyritu sa uskutočňuje (podľa Garrelsa at all., 1960) podľa rovnice (1):

$$FeS_2 + 14 Fe^{3+} + 8 H_2O \xrightarrow{Chemicky} 15 Fe^{2+} + 2 SO_4^{2-} + 16 H^+,$$
 (1)

regenerácia Fe³⁺ baktériami *Thiobacillus ferrooxidans* prebieha (podľa Colmera at all.,1950) podľa rovnice (2):

$$4 \operatorname{FeSO}_4 + 2 \operatorname{H}_2 \operatorname{SO}_4 + \operatorname{O}_2 \xrightarrow{Fe - \operatorname{oxidujúci} \operatorname{druh}} 2 \operatorname{Fe}_2(\operatorname{SO}_4)_3 + 2 \operatorname{H}_2 \operatorname{O}_2$$
(2)

V rovnici (1) nie sú uvedené všetky medziprodukty oxidácie pyritu, ktorá prebieha podľa tzv. thiosíranovej cyklickej dráhy (Schippers & Sand, 1999). Medziprodukty neúplnej oxidácie sa môžu v závislosti od podmienok pri ktorých reakcia prebieha, vo väčšej alebo menšej miere kumulovať, pričom sú vhodným substrátom pre *T. ferrooxidans* i ďalšie baktérie využívajúce redukované sírne zlúčeniny: *T. thiooxidans*, *T. acidophilus* a miernejšie acidofily *T. neapolitanus*, *T. novellus*, *T. thioparus* a *Thiomona intermedia*. Tieto mikroorganizmy je možné izolovať zo zvetraných uhoľných háld, vystavených určitú dobu poveternostným podmienkam. Bakteriálna oxidácia elementárnej síry ako jedného z medziproduktov prebieha nasledovne (3):

²Ing. Ivana Sýkorová, CSc., Ústav struktury a mechaniky hornin AV ČR, V Holešovičkách 41, 182 09 Praha 8

¹ Ing. Zlatica Machajová, MVDr. Daniel Kupka & RNDr. Dana Čurillová, Ústav geotechniky SAV, Watsonova 45, 043 53 Košice

⁽Recenzované v roku 2000)

$$S^0 + H_2O + 1,5 O_2 \xrightarrow{S-\text{oxidujúci druh}} H_2SO_4.$$
 (3)

V podmienkach nášho experimentu, pri pH < 2 a vysokej hodnote oxidačno-redukčného potenciálu, v dôsledku aktivity železo-oxidujúcich baktérií predpokladáme úplnú oxidáciu pyritickej síry až na S⁶⁺ v súlade s rovnicou (1) (Mandl et al., 1999). S postupujúcou biodegradáciou pyritu bude koncentrácia železa a síranov vo výluhu proporcionálne narastať v molárnom pomere Fe^{celk.} : SO₄²⁻ = 1 : 2.

Cieľom našej práce bolo posúdenie vhodnosti použitia bakteriálneho lúhovania k desulfurizácii uhlia z lokality Sokolov (Česká republika), na základe petrograficko - mineralogickej analýzy vzoriek po bakteriálnom lúhovaní.

Materiál a metódy

Pre bakteriálne lúhovanie bol použitý sklenený reaktor, do ktorého bola po sterilizácii vložená vzorka uhlia zrnitosti pod 0,63mm a lúhovací roztok (tab.1). Po premiešaní a homogenizácii suspenzie bola do reaktora pridaná bakteriálna kultúra *Thiobacillus ferrooxidans*. Baktérie boli kultivované v médiu so síranom železnatým. Vyrastená kultúra bola centrifugovaná pri 2000 rpm, kvôli odstráneniu zrazenín Fe³⁺. Supernatant obsahujúci baktérie bol filtrovaný cez membránový filter s veľkosťou pórov 0,23 µm. Baktérie zachytené na filtri boli následne suspendované v čerstvom lúhovacom roztoku. Počas lúhovania boli kontinuálne zaznamenané hodpoty pH a rH. Teplota v priebehu celej doby lúhovania bola udržiavaná na hodnote 30°C (Kupka et al., 2000).

Tab.1. Chemické zloženie lúhovacieho roztoku pre bakteriálne odsírenie uhlia. [Celkové množstvo síranov vypočítané sumáciou jednotlivých komponentov vrátane kyseliny sírovej je približne 1,8 g.l⁻¹. Počiatočné pH=2].

Tab.1. Leaching medium composition for bacterial desulphurisation of coal. [Total amount of sulphate anions, calculated by summation of all sulphate salts including sulphuric acid added to the medium is about 1.8 g per liter. Initial medium pH = 2].

Zložka	g.l ⁻¹	SO4 ²⁻	SO4 ²⁻	Zložka	g.l -1	SO ₄ ²⁻	SO ₄ ²⁻
		mmol.l ⁻¹	mg. ⁻¹			mmol.l ⁻¹	mg.l ⁻¹
$(NH_4)_2SO_4$	0,20	1,51	145,38	FeSO ₄ .7H ₂ O	stopy		
KH ₂ PO ₄	3,0			H ₂ O	1000		
MgSO ₄ 7H ₂ O	0,5	2,03	194,85	5M H ₂ SO ₄	3,0	15,00	1440.90
CaCl ₂ .6H ₂ O	0,25			SO_4^{2-} total		18,54	1781,13

Zo vzoriek pôvodného uhlia, uhlia po experimentoch a po zaliatí do epoxidovej živice, boli pripravené zrnové nábrusy (ISO 7404/2, 1984a). Svetelná odrazivosť R a macerálové zloženie bolo merané pomocou mikroskopu UMSP 30 Petro fy Carl Zeiss - Opton v odrazenom svetle ($\lambda = 546$ nm), imerznými objektívmi so zväčšením 25x a 40x a s olejovou imerziou s n = 1,518. Fluorescenčná analýza liptinitu bola urobená na rovnakom zariadení fy Carl Zeiss - Opton, s použitím ortuťovej výbojky, sady filtrov v reflektore Fl 09 a suchých objektívov so zväčšením 16x a 40x.

Petrografická a mineralogická analýza vstupnej vzorky

Vzorku uhlia zaraďujeme (ISO 7404,1998b) k lignitom so svetelnou odrazivosťou 0,33%, s vyšším obsahom liptinitu a pyritu (tab.2). Uhlie má nižší koeficient zachovania rastlinných pletív (TPI) a vyšší stupeň gelifikácie (GI). Koeficienty boli prepočítané v súlade s modifikovanými rovnicami (4), (5) (Kalkreuth, 1991):

$$GI = \frac{\text{denzinit + ulminit + korpohuminit (in situ) + makrinit}}{\text{atrinit + textinit + fuzinit + semifuzinit + inertodetrinit}}$$
(4)

$$TPI = \frac{\text{textinit + ulminit + korpohuminit (in situ) + fuzinit + semifuzinit}}{\text{atrinit + denzinit + gelinit + makrinit}}$$
(5)

Uhlie je macerálovo veľmi pestré. Zo skupiny huminitu dominuje ulminit a denzinit. Textinit a ulminit vznikli z parenchymatických a drevných bunečných pletív koreňov, vetiev, kôry a lístia bylín a drevín, v čiastočne vlhkom prostredí a pravdepodobne s nižším pH. Vznik textinitu B a ulminitu B často závisí od angiosperných rastlín. Proces gelifikácie prebiehal intenzívne pravdepodobne v subakvatickom prostredí, za prítomnosti špeciálnych najmä Na a Ca iónov.

Obsahy atrinitu, prechádzajúceho často v liptodetrinit, textinitu, gelinitu a korpohuminitu väčšinou nepresahujú 5%. Z macerálov skupiny liptinitu je častý liptodetrinit a v menšej miere sporinit, bituminit, rezinit, kutinit a ojedinele fluorinit. Ich fluorescenčná farba je vo všetkých vzorkách jasne žltá až oranžová. Obsah inertinitu je nízky (tab.2). Z tejto skupiny boli v študovanej vzorke identifikované tieto macerály: fuzinit, sklerotinit, inertodetrinit a makrinit.

			Tab.2. Petrografická analýza vstupnej vzorky uhlia. Tab 2. Petrographical analysis of coal sample					
			1	<i>uo.2. 1 etrogruphieut</i> e	analysis of cour sample.			
VSTUPNÁ VZORKA								
		R _r [%]	0,33					
		s [%]	0,05					
Huminit	65,7	Liptinit	17,1	Inertinit	4,5			
attrinit	5,2	sporinit	4,9	fuzinit	2,0			
denzinit	14,9	kutinit	0,8	semifuzinit	0,0			
textinit	4,5	suberinit	0,2	sklerotinit	1,2			
А	0,0	rezinit	1,4	makrinit	0,3			
В	4,5	liptodetrinit	7,8	inertodetrinit	1,0			
ulminit	34,5	bituminit	1,7	Minerálna prímes	12,7			
TU – A	0,0	alginit	0,0	FeS ₂	2,9			
TU - B	22,9	fluorinit	0,3	ostatné	9,8			
EU - A	0,0							
EU - B	11,6							
gelinit	3,4			TPI	1,9			
korpohuminit	3,2	<u> </u>		GI	4,2			

[Rr = stredný hodnota, svetelná odrazivosť r = 0, [%] s = štandardná odchýlka [%], macerálové zloženie [obj. %]: A = tmavá varieta, B = svetlá varieta, TU = texto ulminit, GI = index gelifikácie, TPI = index zachovanie rastlinných pletív].

[Rr = random mean, reflectance r = 0, [%] s = standard deviation [%], Macerals composition [%]: A = dark variety, B = light variety, TU = texto-ulminite, GI = gelification index, TPI = index tissue preservation].

Minerálnu prímes študovanej vzorky, možno podľa veľkosti rozdeliť do dvoch skupín:

- jemnú, spätú s organickou hmotou, ktorá tvorí výplne bunečných priestorov, resp. je dispergovaná v detritickej hmote, alebo vypĺňa mikrotrhlinky v ulminite,
- masívnu, ktorá vypĺňa pukliny, trhlinky a je tvorená predovšetkým ílovými minerálmi, sulfidmi a kremeňom.

Röntgen-difrakčnou analýzou boli identifikované ílové minerály (napr. illit, kaolinit), disulfidy železa (pyrit, markazit) a kremeň.

Obr.1. Formy Fe disulfidov vo vzorke: (a) masívny a framboidálny FeS_2 (olejová imerzia, zväčšenie 25x; (b) výplne mikrotrhlín FeS_2 v denzinite(suchý objektív, zväčšenie 16x).

Fig.1. The forms of Fe disulphides in sample: (a) framboidal and massive FeS_2 (oil immersion, magnification 25x); (b) Fillings of microcracks FeS_2 in densinite (dry object lens, magnification 16x). Vzorka obsahuje výplne trhlín disulfidov železa (obr. 1a,b,c,d):

- syngenetického (až ranodiagenetického) pôvodu, ktorý vznikal súčasne so vznikom uhlia v biochemickej a geochemickej fázy preuhoľnenie za spolupôsobenia thiobaktérií je mikroskopických rozmerov nepravidelne dispergovaný v uhoľnej hmote,
- epigenetického (postsedimentárneho) pôvodu, a to jemnozrnné formy (framboidy (1-4µm), kryštály a ich zhluky).

Obr.1. Formy Fe disulfidov vo vzorke: (c) framboidálny FeS₂ (zväčšenie 3000x); (d) masívny FeS₂ (olejová imerzia, zväčšenie 25x). Fig.1. The forms of Fe disulphides in sample: (c) framboidal FeS₂ (magnification 3000x); (d) massive FeS₂ (oil immersion, magnification 25 x).

Petrografická analýza uhlia po bakteriálnom lúhovaní

Biologickým lúhovaním študovanej vzorky uhlia nedochádza počas 14 dní k zmenám v organickej hmote (huminit), mierne sa však zvýšil počet kontrakčných puklín (tab.3). Farba fluorescencie liptinitu je jasne žltá a oranžová, tak ako v pôvodnej vzorke.

		1	ub.5. 1 en be	gruphicui unuiysis of coui	ujier biologicui ieuching.		
VZORKA UHLIA PO BIOLOGICKOM LÚHOVANÍ							
		R _r [%]	0,32				
		s [%]	0,04]			
Huminit	66,7	Liptinit	17,8	Inertinit	4,3		
attrinit	5,3	sporinit	4,2	fuzinit	2,0		
denzinit	16,8	kutinit	0,8	semifuzinit	0,0		
textinit	3,6	suberinit	0,2	sklerotinit	0,5		
А	0,0	rezinit	2,0	makrinit	0,3		
В	3,6	liptodetrinit	7,6	inertodetrinit	1,5		
ulminit	34,2	bituminit	3,0	Minerálne prímesy	11,2		
TU – A	0,0	alginit	0,0	FeS ₂	2,7		
TU – B	20,2	fluorinit	0,0	ostatné	8,5		
EU – A	0,0						
EU – B	14,0						
gelinit	3,7			TPI	1,7		
korpohuminit	3,1			GI	4,1		

Tab.3. Petrografická analýza uhlia po biologickom lúhovaní. Tab.3. Petrographical analysis of coal after biological leaching

[Rr = stredný hodnota, svetelná odrazinosť r = 0, [%] s = štandardná odchýlka [%], macerálové zloženie [obj. %]: A = tmavá varieta, B = svetlá varieta, TU = texto ulminit, GI = index gelifikácie, TPI = index zachovanie rastlinných pletív].

[Rr = random mean, reflectance r = 0, [%] s = anomaly [%], Macerals composition [%]: A = dark variety, B = light variety, TU = textoulminite, GI = gelification index, TPI = index tissue preservation].

Biologické lúhovanie spôsobilo pomerne výrazné zmeny v útvaroch FeS_2 , najmä synsedimentárneho pôvodu. Jasne žiariace výplne mikrotrhliniek, zhluky kryštálov a framboidov FeS_2 sú po lúhovaní väčšinou menej jasné, zle sa zaostrujú a chýba im vnútorná štruktúra (obrysy kryštálikov nie je možné rozlíšiť) (obr. 2a, b, c, d).

V niektorých prípadoch došlo biologickým lúhovaním k čiastočnému až úplnému odstráneniu framboidov, dispergovaných v mineralizovanom detrite a v maceráloch skupiny huminitu. Poukazujú nato prázdne otvory

oválneho tvaru (obr. 2b, d). Masívne zrná FeS_2 sú prakticky bezo zmien a po biologickom lúhovaní došlo maximálne k miernemu rozrušeniu ich povrchu, resp. k nepravidelnému uvoľneniu žilného pyritu.

Obr.2. Atakovaný framboidálny pyrit(1) v ulminite a atrinite (a); uvoľnený pyrit (1) v porigelinite (b). Fig.2. Attacked framboidal pyrite (1) in ulminite and attrinite (a); Loosening pyrite (1) in porigelinite (b).

Obr.2. Atakovaný pyrit (1) v ulminite po biologickom lúhovaní (c); uvoľnený pyrit (1) a atakovaný pyrit (2) v denzinite po biologickom lúhovaní (d); (olejová imerzia, zväčšenie 100x).

Fig.2. Attacked pyrite (1) in ulminite after biological leaching (c); Loosening pyrite (1) and attacked pyrite (2) in densinite after biological leaching (d); (oil immersion, magnification 100x).

Záver

Využitím baktérií k rozkladu sulfidických minerálov (pyrit, arzenopyrit, realgár, auripigment) došlo k zníženiu obsahu síry a arzénu v uhlí v anorganickej forme cca o 40%. Tento proces však nerieši problém sulfátovej síry a organickej síry viazanej na uhoľnú hmotu. Biologickým lúhovaním študovanej vzorky uhlia nedochádza k degradácii organickej hmoty. Vo vzorke uhlia sa po dvoch týždňoch lúhovania nachádzajú menej početné samostatné formy framboidálneho pyritu. Vzhľadom na to, že mikroskopické zrnká pyritu a markazitu, sú v sledovanej vzorke uhlia úzko späté s organickou hmotou uhlia, je možné predpokladať zlepšenie výsledkov bakteriálneho rozkladu disulfidov železa jemnejším otvorením zrna a taktiež i aplikáciou adaptovaných kultúr *Thiobacillus ferrooxidans*, aplikáciou zmesných kultúr *Thiobacillus ferrooxidans* a *Thiobacillus thiooxidans*, resp. predĺžením doby lúhovania. Okrem tohoto je potrebné uviesť, že bakteriálny rozklad FeS₂ z uhlia je zdĺhavý proces, čo zvyšuje náklady na jeho odsírenie.

> Poďakovanie: Práca vznikla s podporou slovenskej agentúry VEGA v rámci projektu G 6104 a českej grantovej agentúry AV ČR v rámci projektu č. 204 69 04.
> Acknowledgements: Authors gratefully acknowledge the financial support of the Grant Agency of Slovak and Czech Republic (VEGA - G 6104 and GA AVČR - 204 69 04).

Literatúra

- COLMER, A.R., TEMPLE, K.T. & HINKLE, M.E. 1950. An iron oxidizing bacterium from the acid mine drainage of some bituminous coal mines. J. Bacterial., 59, 1950, p. 317-328.
- DUGAN, P.R. & APEL, W.A. 1978. Microbial desulfurization of coal, Metallurgical Applications of Bacterial Leaching and Related. *Microbial Phenomena*, 1978, p. 99-124.
- DOGAN, Z.M. 1992. Coal desulfurization by microbial benefication. Modern Process Mineralogy and Mineral Processing, 1992, p. 666-670.
- GARRELS, R.M. & THOMPSON, ME. 1960. Oxidation of pyrite by iron sulphate solutions. Am. J. Sci., 258 A, 1960, p. 57-67.
- KALKREUTH, W., KOTIS, T., PAPANICOLAOU, C. & KOKKINAKIS, P. 1991. The geology and coal petrology of a Miocene lignite profile at Meliadi Mine, Katerini, Greece. *Int. J. Coal geology*, 17, 1991, p. 54-67.
- KUPKA, D., ČURILOVÁ, D., MACHAJOVÁ, Z. & SÝKOROVÁ, I. 2000. Removal of inorganic sulphur, arsenic and iron from coal by Thiobacillus ferrooxidans. In *Proc.: New Trends in Mineral Processing*, Ostrava, 2000, p. 701-708.
- MANDL, M., ZEMAN, J., BARTÁKOVÁ, I. & VESELÁ, H. 1999. Pyrite biooxidation; Electrochemical and kinetic data. In: *Biohydrometallurgy and the environment toward the mining of the 21st century*, R. Amils and A. Ballester (eds.) Elsevier, Amsterdam, 1999, p. 427-429.
- ISO 7404/2. 1984a. International Standard: Methods for the petrographic analysis of bituminous coal and anthracite, part 5: Method of preparation of coal samples for petrographic analysis. *Economic commission for Europe*, Geneva 1984.
- ISO 7404. 1998b. International classification of in-seam coals. Economic commission for Europe, Geneva, 1998.
- MCCREADY, RGI. & ZENTILI, M.1985. Benefication of Coal by bacterial leaching. *Canadian Metallurgical Quarterly*, 24,1985, p. 135-139.
- SCHIPPERS, A. & SAND, W. 1999. Appl. Environ. Microbiology. 65, 1999, p. 319.
- TAYLOR, G.H., TEICHMÜLLER, M., DAVIS, A., DIESSEL, CFK., LITTKE, R. & ROBERT, P. 1998. Organic Petrology. *Gebrüder Borntraeger*, Berlin-Stuttgart, 1998, p. 704.