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Global theory of nonlinear systems-chaos, knots and stability 

 
 

Stephen P. Banks1 
 
 

Globálna teória nelineárnych systémov-Chaos, uzly a stabilita 
In this paper we shall give a brief overview of nonlinear dynamical systems theory including the theory of chaos, knots, approximation 

theory and stability.  
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Introduction 
 

Ever since the fundamental ideas of Poincaré in the qualitative theory of dynamical systems, there has been 
intense interest into the global behaviour of such systems. Many important ideas and examples have grown out 
of the basic theory including chaos, knotted trajectories, fractal dimension and equivalence theory. Here we shall 
give an overview of some of the most important results which are crucial to the understanding of the behaviour 
of such dynamical systems, including chaos, knots and links, approximation techniques, and stability. 
 

Chaos 
 

Chaos in dynamical systems has been studied for some time now and although no universally accepted 
definition of chaos seems to exist, the best definition is in terms of systems with fractal Poincaré sections in their 
attractors, generating discrete symbolic systems with ‘arbitrarily complex behaviour’. To see what this means, 
first consider the discrete dynamical system defined on a subset ∆ of the closed unit square given by the product 
of two Cantor sets as in fig. 1. 

The dynamics are defined by the two affine functions shown in the figure, which operate on the top and 
bottom thirds of the square. Since we have removed the middle thirds of the intervals in the horizontal and 
vertical directions, we can code the points of the ‘Cantor square’ by a bidirectional binary sequence 

2 1 0 1 2b b b b b b− −= ⋅L L  
(for details, see Wiggins, 1988). The space of all such sequences Σ can be made into a metric space by 
the distance 
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On this metric space we can define a ‘symbolic dynamical system’ by the shift map: 
2 1 0 1 2 2 1 0 1 2( )b b b b b b b b b bσ − − − −⋅ = ⋅L L L .L

                                                

 
It can be shown that f and σ are conjugate dynamical systems and so we can study f by analysing σ. 

The complexity of σ can be seen by noting that it has 
(i) a countable infinity of periodic orbits of arbitrary period 
(ii) an uncountable infinity of nonperiodic orbits 
(iii) a dense orbit. 

 
Fig.1.  The Smale Horseshoe. Fig.2.  (a) System with two homoclinic orbits (b) A heteroclinic 

cycle. 
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A chaotic dynamical system can be defined as one which contains a Poincaré section on which the 
dynamics is conjugate to a (sub)system of type (σ,Σ). A typical situation in three-dimensions is when a system 
contains a homoclinic orbit or a heteroclinic cycle as shown in fig. 2 (see Shiľnikov, 1970). 

 
Knots and Links in Dynamical Systems 

 
Given a nonlinear system with periodic orbits we are interested in when they are knotted and linked 

together. First, the formal definitions. 
Definition A knot is an embedding of  (the 1-

dimensional sphere, i.e. a circle) into  (the 3-sphere). 
A link is an embedding of a disjoint union of circles.  
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Fig.3.  Simple Knots and Links. 

Simple examples of knots and links are shown in fig. 3. 
These two-dimensional diagrams are called regular 

knot projections. An important question is : when are two 
knots or links equivalent (i.e. the same)? 

Definition Two knots K and K’ are (ambient) 
isotopic if there exists a continuous homotopy  of homeomorphisms such that = id and 

. 

3:th S S→ 0h

1 'h K K=o
A very difficult question is – when are two knots isotopic? Reidmeister (Reidemeister, 1932) showed that 

(apart from an ambient isotopy preserving the crossing points in regular graphs such as those in fig. 3), two 
regular knot projections correspond 
to isotopic links if and only if they 
are related by a finite sequence of the 
following three Reidemeister moves 
(shown in fig. 6). 

Consider now systems defined 

on two-dimensional compact surfaces. If S is a surface of genus p then it can carry a dynamical system with 
many nontrivial knots – e.g. a torus can contain any torus knot defined by opening out the torus as in fig. 5. 

 
Fig.4.  The Reidemeister Moves. 

     
Fig.5.  A Trefoil Knot on the T orus.      Fig.6.  Surface of genus 2 with Two Distinct Knots and the Corresponding 

Spherical System. 

However we can ask – how many topologically distinct (non-homotopically trivial) knots can a surface of 
genus p carry and what does the rest of the dynamics look like? This is answered in Banks (Banks, 2002) and the 
answer is simple – a surface of genus p can carry only p distinct knots. By cutting the surface along the knots and 
shrinking them to zero it can also be shown that the remaining dynamics is equivalent to any spherical dynamics 
containing at least 2p equilibria of index +1. (See fig. 6.) 
 

Approximation Theory 
 

In this section we shall introduce a sequence of linear, time-varying approximations for solving the 
nonlinear problem 

0( ) ( ( )) ( ) ( ( )) ( ), (0) nx t A x t x t B x t u t x x= + = R&                    (4.1) 
(If , we have a standard continuous-time dynamical system, while if  then we have a nonlinear 

control system. We can consider partial differential equations and delay systems in the same way.) The 
approximations are given by 

0B ≡ 0B ≠

[ ] [ 1] [ ] [ 1] [ ] [ ]
0( ) ( ( )) ( ) ( ( )) ( ), (0) ( 1)i i i i i ix t A x t x t B x t u t x x i− −= + =&                     (4.2) 

and 
[0] [0] [0] [0]

0 0( ) ( ) ( ) ( ) ( ), (0)x t A x x t B x u t x x= +& . 
It can be shown ([4]) that the solutions of the sequence of unforced systems  

[ ] [ 1] [ ] [ ]
0( ) ( ( )) ( ), (0)i i i ix t A x t x t x x−= =&                        (4.3) 
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converges uniformly on compact time intervals to the solution of the nonlinear system 
0( ) ( ( )) ( ), (0)x t A x t x t x x= =&   .                         (8.4) 

For example, a selection of the first 14 iterates of the Van der Pol equation 
3

1 1 1

2 1

x x x x
x x
= − +
= −

&

&
2

given by the system 
[ ] [ ][ 1] 2

1 11
[ ] [ ]

2 2

( ) ( )( ( )) 1 1
( ) ( )1 0

i ii

i i

x t x tx t
x t x t

−    − +
=    −    

&

&

are shown in fig. 7. For stability theory see (Tomas-Rodriguez and Banks, 2003). 
 

 

 

Fig.7.  Iterates of the Van der Pol Oscillator. 
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