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Riadenie systémov s časovým oneskorením  druhého rádu v kĺzavom móde 
The contribution of the paper is a proposal of the second-order sliding mode control of time delay systems developed analogously to 

the first-order version. Unlike the control variable itself in the first-order version the first derivative (speed) of this variable is assessed in the 
second-order scheme of the SMC (Sliding Mode Control). In accordance with the first order SMC scheme a parallel model of the control 
system is applied prescribing its desired behaviour, to be followed by the controlled process. The model of the feedback system consists of 
both the process and the feedback controller models adjusting the control action amplitude. The process model is supposed to be identified 
as time delay system described by an anisochronic state model, that brings a low order form advantageous for the control synthesis. This 
synthesis is based on a dominant pole assignment performed by the help of the Ackermann formula extension. The mismatch between the 
process and its model, known as perturbation, is rejected by sliding mode technique. The second-order sliding mode is proposed to suppress 
the usually encountered “chattering” of the first-order version of the sliding mode control.  
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Introduction 
 

The idea of a higher-order instead of the first-order sliding mode control was originally proposed by 
(Levant, 1993), and later worked out by (Fridman et al., 1996; Levant, 2000). The second-order sliding mode 
control design for controlling time delay systems is the main aim of this paper. The first-order sliding mode 
control of time delay systems is designed for time delay system description with delays of distributed type in 
(Drakunov et al., 1992; Zheng et al., 1995). The application to sliding mode control of time delay systems 
identified as anisochronic systems is presented in (Zítek et al., 2001). Anisochronic state model used for the 
second-order sliding mode control design also includes distributed delays, in general, and just anisochronic state 
feedback combined with the sliding mode principle is the main contribution of (Zítek et al., 2001). The benefit of 
this combination consists in an insensitivity to controlled system perturbations and in achieving the desired 
feedback system dynamics (Zítek et al., 2001). A reduction of the sensitivity to system perturbation by the 
sliding mode control is largely discussed in (Jalili et al., 1998; Moura et al., 1997) where the perturbation is 
considered as parameter and structure uncertainties and external disturbances. The drawback known as 
”chattering” is significantly reduced just by the second-order SMC scheme, due to integrator filtering (Bartolini 
et al., 1998). The second-order sliding mode control algorithm is defined and then it is connected with an 
anisochronic state feedback.  
 

Second-order sliding mode control 
 

The second-order sliding mode control algorithm is defined by a discontinuous function based on the 
following switching function (Levant 2000) 
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where:  is a control variable and u { }0)(: =∈= xx mnR
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S  is a given surface of sliding motion or in other 
words desired surface of discontinuity. The variable  is the control variable with a piece-wise continuous 
derivative given by (1). If the sliding surface  satisfies the condition (Utkin, 1992)  
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where:  results from  for a certain , the sliding motion is stable. The first derivative of  is 
the unknown variable, that is assessed by a simultaneous application of the following conditions (Levant, 2000)  
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where:  is an auxiliary variable adjusted by a model introduced below (Zítek et al., 2001). au
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and this derivative is bounded by the values  
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Both the magnitude U  and the surface  are specified in chapter 3. )(xm
 

Second-order sliding mode control in anisochronic state space 
 

The identified process model in the functional state space formulation (Zítek et al., 2001)  

),()()()()()(

00

ttudtd
dt

td
TT

xxx fbA +−+−= ∫∫ ττττ         (8) 

with the output equation  
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and with the vector of the perturbations  of dimension  is applied to generate the desired state trajectory 
 by a parallel model  
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where: the vectors  and  are of the same dimension  and all of them are supposed to be measurable. 
With respect to functional nature of (8) and (10) it is advantageous to perform L-transform of (8) and (10) under 
zero initial conditions as follows 
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with dimensions  and  respectively. The matrices (13) are s-multiples of ordinary  
transforms. A reference control variable  is generated in this model assessed as an anisochronic state feedback 
(Zítek et al., 1999) as follows 
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or in the L-transform 
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where:  is a reference state vector. With respect to relation (1) the second-order sliding mode control needs to 

specify the first derivative of the variable u , i.e. 

wx

a dt
dua , and thus equation (15) is modified to the form 
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[ ])()()()( sssssssu wa xx −= k .       (16) 
The matrix  can be obtained by the help of Ackermann formula extension, which performs a dominant pole 
assignment (Zítek et al., 1999). After substituting L-transform (11) of the process model (8) into (16) one can 
rewrite (16) as follows  
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when assuming the first derivative of the reference state vector as . The first  0)( =ss wx
derivative of u  at time  is given by inverse L-transform of (17) as follows a t
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Since the models (8) and (10) are introduced, the surface of the sliding motion derived in (Zítek et al., 
2001) as follows 

[ ])(tttm w xx −= )()( c        (19) 
can be applied to the condition (3). Therefore the second derivative of the state vector  as well as state 
trajectory  are found out using models (8) and (10) as follows 
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Instead of these functional equations their L-transforms are applied in the form 
)()()()()()()()()()()( 22 sssssussussssss ffAbbAA ++++= xx       (22) 

and 
)()()()()()()()( 22 ssussussssss aa

w bbAA ++= xx       (23) 
After substituting the second derivatives (22) and (23) into L-transform of the condition (3) applied to (19) one 
can write 
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Then, on assumption that , it results from the condition (4)  n×≠ 10c
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Consequently the relation (24) can be rewritten in the form  
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The first derivative of the control variable is extracted from (26) as follows 
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where:  is the left inverse of the matrix b . The inverse L-transform of (27) is as 
follows 
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where: the first derivative of u  is computed by (18). So the magnitude (7) is specified due to (6) and (28) as 
follows 
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where: the parameter  is the so-called perturbation parameter (Fišer et al., 2002). This parameter is adjusted in 
the manner 
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as it is selected from (28) and (29). The inequality (30) is only accepted in the interval  (Fišer et al., 
2002) where 

( Ψγ ,0∈ )
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( )fsup=Ψ        (31) 
The perturbation f of the process model (8) is not considered in the first derivative (18) of the variable , 

as the vector of perturbations  is explicitly expressed in the first derivative (28) of the control variable . If all 
the state variables in the vector  are measurable they can be compared with the generated state vector 
trajectory . Due to the integration in the sliding mode feedback a favourable filtering effect is obtained in the 
control action. In addition the known advantage of the control algorithm it is easy way to remove a wind-up 
effect but also to reduce the chattering. by limited integrator.  
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Conclusions 

 
The second-order sliding mode control of time delay systems based on anisochronic model has been 

developed as a modification of the usual scheme of SMC. In addition, some of the delay effects are compensated 
by the parallel model designed as anisochronic one. Unfortunately, the synthesis of model state feedback 
deriving the reference state trajectory may sometimes result in unfeasible feedback operator . Physical 
feasibility can then be achieved by using Smith based control scheme. In the following research the features of 
the second-order sliding mode control, i.e. the chattering reduction and the insensitivity to perturbations, will be 
tested on a laboratory heat transfer plant with significant hereditary properties.  
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