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Realizácia regulátorov neceločíselného rádu 
An approach to realizations of fractional-order controllers is presented. The suggested approach is based on the use of continued 

fraction expansions.  
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Fractional-Order Systems and Controllers 
 

General information about various approaches to fractional-order differentiation and integration can be 
found in the available monographs on this subject (Kiryakova, 1994; Podlubny, 1999; Samko, Kilbas and 
Matichev, 1987). Because of this, we do not discuss general definitions here. Instead, we recall only the 
expressions for describing fractional-order systems and PI Dλ µ  controllers (Podlubny, 1999).  

A wide class of linear fractional-order control systems can be described by fractional differential equations 
of the form  
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or by continuous transfer functions of the form:  
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 denotes the Riemann-Liouville or Caputo fractional derivative (Podlubny, 1999);  
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The fractional-order PI Dλ µ  controller was proposed (Podlubny, 1999) as a generalization of the  
controller with integrator of real order  and differentiator of real order . The transfer function of such type 
the controller in Laplace domain has the form:  
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where:  is the proportional constant, T  is the integration constant and T  is the differentiation constant. 

Taking  and , we obtain a classical  controller. If  and/or T , we obtain a PD
K
λ
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controller, etc.  
 
 

Continued fractions and multiple loops 
 

Recently we have established an interesting new relationship between continued fractions and nested 
multiple-loop control systems.  Namely, the transfer function of the nested multiple-loop control system shown 
in Figure 1 has the form of the following continued fraction expansion:  
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Fig.1.  Nested multiple-loop control system of the first type. 

 
 

 
 
Fig.2.  Nested multiple-loop control system of the second type. 
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Similarly, the continued fraction expansion of the transfer function of the other useful type of a nested 
multiple-loop control system, depicted in Figure 2, is:  
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Both these types of nested multiple-loop systems can be used for simulations and realizations of arbitrary 

transcendental transfer functions. For this, the transfer function should be developed in a continued fraction, 
which after truncation can be represented by a nested multiple-loop system shown in Figure 1 or Figure 2.  
 

Negative impedances 
 

Continued fraction expansions provide a general tool for various realizations of fractional order controllers, 
both analogue and digital. The case of negative coefficients in the continued fraction expansion is of special 
interest from the viewpoint of realization in the form of Cauer’s canonic circuits (Kvasil, 1981), when one has 
therefore to deal with negative impedances.  

The possibility of realization of negative impedances in electric circuits has been pointed out by Bode 
(Bode, 1949, Chapter IX). Later, in 1970s, operational amplifiers appeared, which significantly simplified 
creation of circuits exhibiting negative resistances, negative capacitances, and negative inductances. Such 
circuits are called negative-impedance converters (see sample circuits in (Dostal, 1993)).  

 
Conclusion 

 
The use of continued fraction expansions is a good general method for designing devices (fractances) 

described by fractional differential equations or by fractional-order transfer functions. Moreover, this approach 
can be used for realization of other types of systems with transcendental transfer functions, which can be 
developed in continued fractions.  

The two types of nested multiple-loop systems, described in this paper, can be used for modelling, 
simulation, and realization of fractional-order systems and controllers, and, in general, for modelling, simulation 
and realization of systems with known rational approximation of their transfer function.  
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