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Tok tekutiny ostro lomeným potrubím v tvare V 
In this paper we study a viscous fluid flow over a V-shaped body for a range of Reynold's number from Re = 5 up to Re = 500.  We 

solved the unsteady Naveir-stokes equations in the stream function - vorticity formulation. The irregular physical domain is transformed into 
a rectangular shape using the elliptic grid generation. We applied the Finite diference discretization technique for governing the partial 
diferential equations, in this technique, the computational domain is covered by a pattern, network or mesh points called grid points. The 
governing equations are then reformulated at each interior point by replacing all partial derivatives with appropriate Finite diferences, thus 
converted to a set of discrete algebraic equations. 
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Introduction 
 

In most frequently encountered situations, fluid flows can be classified into different categories according to 
their density and viscosity. For the compressible flows the variation of density must be taken into account which 
implies that M > 0.1, where M is the Mach number (the local speed of sound); conversely, for the incompressible 
flows, the flow speeds are assumed to be much smaller than the speed of sound, i.e M << 1. On the other hand, 
the consideration of the influence of viscosity suggests three major categories: inviscid flow with the zero 
dynamic viscosity; the boundary layer flow, where the viscosity is important in the vicinity of the surface; and 
the separated flow, where the viscosity is important in the whole concerned region. There are other points of 
view to categorize the fluid flow, mathematically and numerically. First, mathematically, the criteria could be the 
type of the governing PDE or the method of the solution of the governing equations. Second, regarding the 
geometric configuration, there are three categories: flows outside bodies; confined flows and partially confined 
flows. From the numerical analysis point of view, the principal tasks of the CFD are the following:  
• the first one is concerned with the governing equations and the associated initial and boundary conditions 

which are replaced by a system of algebraic equations through the discretization techniques,  
• the second one are the algebraic equations produced by the discretizations, which are solved using an 

efficient computational method. 
 

Formulation of The Problem - Governing Equations 
 

The Streamfunction-Vorticity form of the unsteady NS equations are given in [1] by: 
 

ζψψ −=+ yyxx                  (1) 

( yyxxyxxyt ζζζψζψζ +=−+
Re
1 )               (2) 

where ψ  is the stream function, ζ  the vorticity, and Re is the non-dimensional Reynolds number.          
The important feature of the stream function-vorticity formulation is that the pressure P is not found explicitly in 
these equations. 

The equations: 
yu ψ=   xv ψ−=                (3) 

are the velocity components at any point of a two-dimensional flow. The graphs of the physical domain are 
shown in the figure (1) and (2).  

Grid system for the contraction geometry (Graph of the blunt V-shape) 41 x 41 grid points. 
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Fig. 1.  Grid system on the blunt V-shaped domains 2 Fig. 2.  Grid system on the sharp V-shaped domain  

  
Fig. 3.  Theflow direction through the physical domain 

 
Numerical grid generation - mathematical development 

 
In the present work we study the incompressible fluid flow in the V shape geometry, which is a non 

rectangular domain, using the Numerical Grid Generation to overcome the difficulty of the nonequal step sizes 
of the grid points [9] and [10]. 

To overcome this difficulty some general mappings were employed to transform the non-rectangular 
physical domain into the rectangular computational domain. These transformations lead to a uniformly grid 
spacing in the computational plane while points in the physical space may be unequally spaced by specifying the 
generalized coordinate system, that will map the non-rectangular grid system in the physical space to a 
rectangular uniform grid spacing in the computational space. The central issue at this point is to identify the 
location of the grid points in the physical domain. That is, what are the x and y coordinates of a grid point in the 
physical space that correspond to a grid point (i; j) specified in the computational domain?. Here, a system of 
elliptic equations in the form of Laplace equations is introduced, which is solved for grid points in the physical 
domain. The general transformation from the physical plane x; y to the transformed plane ηξ ,  is: 

 
                                          (4) 
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                                                           (5) 
 
 
 

 
Now, for any function ƒ, the first derivative in the computational domain is given by: 

 
                                                                    (6) 
 

and the Laplacian is defined as : 
                  (7) 

 
 

where  γβα ,, ,d, e are as given in [9]. 
For any function ƒ(x;y) the transformation of the time derivative from the physical domain to the 

computational domain takes the form:  
 
 
                        (8) 
 
 

The system of elliptic equations: 
 

                                                              (9) 
 
 

is solved in the computational domain (ξ,η) in order to provide the grid point locations in the physical space 
(x,y). 

 
                                                       (10) 
 

 
 

 
 

 
 

 
 

                     (11) 
 

 
The spatial derivatives are obtained in the non conservative form, i.e: [ ] [ ] ( )tytxtxyt yx ζζζζ ξη +−= , 

putting  [19], so that [ ] . The equations in the physical domain are now transformed into 

the 

0== tt yx [ ]xytt ζζ ξη =

ηξ plane and thus all the computations will be performed in the computational domain. Thus, the governing 
equations in the computational domain will have the form: 

 
 
         (12) 
 
 
        (13) 
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                                    (14) 

 
 

 
Fig. 4.  Grid system on the computational domains  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

To solve numerically equations (12), (13) and (14) with the boundary conditions as shown in Fig. 3., we use 
the second order central finite diference formulae, given by: 

 
                                                      (15) 

 
 

 
 

and the first derivatives 
 
                                                             (16) 
 

 
 

 

On the boundaries we use the second-order finite diference approximation for 
ε∂
∫∂  and 

η∂
∫∂

 , which is given 

by: 
 

                                                  (17) 
 

 
 

 
          (18) 

 
 

Similarly, we can find the first and second derivatives for V and P. The time derivative terms are 
approximated using the forward diference approximation, which takes the form 

 
                                                                    (19) 
see [14] and [4]. The diference equations can be 
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obtained by applying equations (15), (18) to equations (11), (14). 
 

 
              (20) 

 
 
 
 
 

 
 
 
 
 
 

 
 
(21) 
 
 
 
 
 

Similarly we can get the diference equations for u and v. 
 

Discussion of the results 
 

Two regions of the fluid flow are under consideration. These two regions differ in that their upper border is 
either of blunt or sharp 'V' shape, see fig. 1. and 2.. So that each of the flow attributes corresponding to any 
specified Reynold's number is displayed for these two cases, respectively for Re = 5. Figure 5. gives the 
streamlines for the flow. In Fig 5a, we observe that at the entrance to the region there is some small vortex 
formed at the left corner, while at the exit where the flow starts to slow down, the area of the vortex increases 
where continues to slow down due to the gravity and the deceleration due to the flow along the flat edge of the 
upper border. In Fig 5b, the streamlines are more or less symmetrical, except at the exit, where the slow down is 
at maximum. The same comments are applied to the rest of cases up to Re = 500, see figures 6- 12.Nevertheless, 
the vortices at different points in the flow region are given, which have a maximum gradient at points where the 
flow starts to slow down, as expected at the exit of the flow region. The vorticies are computed for Re = 5 up to 
Re = 500. It is worthwhile noting that after Re = 300 the viscosity of the fluid in general becomes less and the 
gradient of the vorticity on the exit side becomes weaker as Re increases. It looks from the above results that our 
model is in a very reasonable accordance with the physical state of the flow for different Reynold's numbers. 

 

 
Fig. 5.  The graph of ψ at Re = 5 
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Fig. 6.  The graph of ψ at Re = 10 

 

 
Fig. 7.  The graph of ψ at Re = 50 

 

 
Fig. 8.  The graph of ψ at Re = 100 

 

Fig. 9.  The graph of ψ at Re = 200 
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Fig. 10.  The graph of ψ at Re = 300 

 

 
Fig. 11.  The graph ψ Re = 400 

 

 
Fig. 12.  The graph of ψ at Re = 500 

 

 
Fig. 13.  The graph of ζ at Re = 5 
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Fig. 14.  The graph of ζ at Re = 10 

 
Fig. 15.  The graph of ζ at Re = 50 

Fig. 16.  The graph of ζ at Re = 100 
 

Fig. 17.  The graph of ζ at Re = 200 
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Fig. 18.  The graph of ζ at Re = 300 
 

 
Fig. 19.  The graph of ζ at Re = 400 

 

 
Fig. 20.  The graph of ζ at Re = 500 
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