
 
Acta  Montanistica  Slovaca     Ročník 10 (2005), mimoriadne číslo 1, 5-11 

 
Theoretical and experimental study of surface forces in disperse systems 
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Teoretické a experimentálne štúdium povrchových síl v disperzných systémoch 
V príspevku sú stručne  zhodnotené výsledky priamych experimentálnych meraní povrchových síl medzi makroskopickými 

povrchmi so zvláštnym dôrazom na tzv. štrukturálny, resp. hydratačno-hydrofóbny typ povrchových síl. Súčasne sú analyzované 
povrchové sily medzi mikroskopickými časticami modelových disperzných systémov, a to nepriamo z ich agregačnej kinetiky, 
a porovnané s uvedenými výsledkami priamych meraní povrchových síl. Prezentované sú aj dielčie výsledky meraní kinetiky 
homokoagulácie vodného sólu SiO2, pridaním koagulantov u ktorých sa predpokladá potlačujúci účinok na hydratačnú (KCl)                  
a stimulačný účinok na hydrofóbnu (cetyltrimetylamónium bromid - CTAB) interakciu častíc uvedeného hydrosólu ako aj výsledky 
stanovenia heteroagregácie zo spektier elektroforetického rozptylu svetla binárneho sólu SiO2. Tieto merania zatiaľ nepotvrdili 
existenciu spomínaných krátkodosahových typov povrchových síl.      
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Introduction 
 

The surface forces (SF) manifest themselves between any surfaces or interfaces between solid, liquid, 
and gaseous phase, if they approach each other to the separation below a few hundreeds nanometers. This 
universality of the existence of SF irrespective of the interface type intimates an immense importance          
of the study and knowledge of these forces as well as their role in many scientific fields. It is therefore 
difficult to briefly comprehend all areas where SF operate. Importantly, SF also arise between various 
particles of inorganic and organic origin (solid particles, droplets, bubbles, cells, bacteria, etc.) in disperse 
systems where various aggregation processes (coagulation, coalescence, flocculation, flotation, adhesion, ...) 
are induced thereby. 

 
Measurements of surface forces between macroscopic surfaces 

 
An enormous attention is hence devoted to the SF by scientists from many fields, especially physicists, 

(colloid) chemists, chemical engineers and many others for over 60 years, i.e. from the time when the famous 
DLVO theory (Derjaguin, Landau, Verwey, Overbeek) was elaborated, predicting the existence of two 
independent types of SF, namely the van der Waals forces (vdW) and the electrostatic double layer forces 
(EDL) [1]. This theoretical step is in the area of colloid chemistry considered to be of the same importance   
as the Darwin´s evolution theory in biology [2,3]. The argument is that the DLVO theory had been validated 
successfuly soon after its introduction in ca. 1940 by direct SF measurements between some materials (glass 
filaments, gold foils, mica sheets) [4].  

From that time, the experimental research of SFs progress by leaps and bounds, especially during last 
decades in connection with the development and wide availability of commercially produced equipments    
for the direct surface force measurements between macroscopic surfaces: Measurement and Analysis           
of Surface Interactions and Forces (MASIF), Surface Force Apparatus (SFA), Atomic Force Microscopy 
(AFM) and more recently other instruments [5]. The first SFA was constructed by J. N. Israelachvili           
and G. E. Adams in 1976 [6]. The SF are measured as a function of the separation between two surfaces       
of thin molecularly smooth muscovite mica sheets bend and sticked on glass cylinders (turned 90 degrees) 
from which the one (lower) is positioned on a spring to measure the interaction force and the other is fixed   
on the piezoelectric tube. The deflection of the spring (proportional to the interaction force) is determined 
from the difference between a chosen change of the piezo position and the corresponding change                  
in the distance between the surfaces. This separation is determined interferometrically by using white light 
(FECO) passing through the mica sheets from inside and then entering the spectrophotometer. The whole 
system is immersed in an aqueous solution. The principle and appearance of the SFA instrument MARK IV 
is shown in Fig. 1.  
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Fig. 1.  The principle and appearance of the MARK IV Surface Force Apparatus 
 
The utilization of AFM increases unprecedentedly in more and more fields, including biological 

sciences, where it allows e.g. to study biophysics of molecular interactions in such processes as the neuronal 
signal transmission in biological systems, etc.. AFM or SFM (Scanning Force Microscope) developed         
by G. Binnig, C. Gerber, and C. Quate in 1985 [7] (G. Binnig received the Nobel price in physics in 1986), 
utilizes an imaging technique in which the piezoelectric crystal scans horizontally together with a sample 
fixed on it. A sharp tip positioned on a stationary holder moves vertically, sliding on the surface features.   
The laser strikes upon the upper part of the tip holder and is reflected to the photodiode depending                
on the holder deflection. This optical method of the deflection evaluation differs AFM from the Scanning 
Tunneling Microscope (STM) where the tunneling current between the tip and the conductive surface            
is detected. In the so called calibration AFM regime, the interaction force between the tip and the imaged 
surface is measured. Here, the piezo with a sample is fixed in a horizontal position and is moved up and 
down, toward the tip and back, due to the applied voltage. Simultaneously, the deflection of the cantilever 
holding the tip is detected as a signal from the photodiode. The result is a dependence of this signal 
(proportional to the measured interaction force) on the applied piezo voltage. Since the geometry of the tip    
is unknown, the interaction force is difficult to calculate and a sphere is sticked on it, providing                    
the sphere/flat interaction configuration (physically identical to the configuration of crossed cylinders           
in SFA), suitable for the mathematical treatment of the interaction force [8]. On the other hand, along with 
the interaction force measurement in the calibration regime, AFM can be used to image the surface features 
in the imaging (scanning) regime. The principle and appearance of AFM NanoScope is shown in Fig. 2. Both 
SFA and AFM can also be used to measure adhesion or the so-called pull-off force needed to overcome      
the adhesion forces between the measured surfaces in contact.  

 

 
 

Fig. 2.  The principle and appearance of the Atomic Force MIcroscope 
 
In the direct measurements, aside from their unambiguous scientific contribution, however, many 

factors (previously not expected) have been noticed, complicating the evaluation and interpretation of surface 
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forces. Especially, it is the way of preparing and treating the surfaces, the deformation of the surfaces 
themselves due to their own SF, heterogeneity of the surfaces (roughness and chemical heterogeneity),        
the way and speed of approaching the surfaces, the way of measuring the SF and the intersurface distance, 
etc. These factors more or less caused that the SF measurements have not been extended to many materials 
and restricted almost exclusively to mica sheets with their molecularly smooth, homogeneous, easily 
cleavagle, and well characterized surfaces. The recent rapid development of AFM experiments, where         
the interaction force curve between dissimilar materials (sphere/plate) is measured, extend the SF 
determinations to another materials but still suffer from similar and even more complicated and to a certain 
extent specific effects which must be considered in the analysis of SF.  

 
Measurements of hydration/hydrophobic force between macroscopic surfaces 

 
The direct measurements not only contributed appreciably to the explanation of the above mentioned 

long-range vdW and EDL (DLVO) SF between ideal macroscopic substrates but revealed seemingly new,   
so-called non-DLVO types of surface forces, including short-range repulsive and attractive SFs occuring 
between hydrophilic and hydrophobic surfaces in aqueous solutions, respectively [9]. Since the measurement 
and evaluation of any short-range SF (detected at separations on the order of up to few tens of nanometers)  
is in principle more complicated by the above side factors, the results of the direct measurements                  
of the above hydration/hydrophobic SFs in the SFA or AFM are shady and not explained so far (see [10]    
and references herein).  

It is worth of mentioning that a serious attention has been devoted to the long-range „hydrophobic“ SF 
measurable between surfaces at their separations of several hundreeds nanometers or so. However,                 
it is recently shown that a pseudo-cavitation phenomenon is responsible for sucha long-range attraction      
due to nano to microbubbles formed on the surfaces during the measurements (at approaching or separating 
the surfaces). A confirmation of the existence of such „bubstones“ is at the moment highly appealing but still 
remains controversial [11]. In this regard, it has been found that the way of hydrophobization (physical 
adsorption of surfactants, covalent silanation, Langmuir-Blodgett films, ...) of the surfaces as well as of their 
introduction into the solution plays an important role in this phenomenon [12]. The physical adsorption        
of cationic surfactants on the negatively charged surfaces of mica in the SFA appears to be the only way       
of hydrophobization allowing us to experimentally identify the „true“ hydrophobic force of s short decay.  

Taking into account the above facts, the available SF curves between hydrophobic surfaces were 
reevaluated and, basing on the surface thermodynamics approach, it has been proposed that                          
the hydration/hydrophobic SFs represent opposite regimes of an unique short-range SF of exponential decay 
and (possibly) structural origin [10].   

 
Measurements of surface forces between microscopic surfaces – aggregation experiments 

 
Apart from the complications and limits accompanying the fundamental SFA or AFM experiments 

between fixed macroscopic surfaces, however, one of the basic goals of the research - the SF between 
surfaces of microscopic particles in disperse systems and their role in the aggregation phenomena - is 
apparently circumvented. It is true, however, that the direct measurements of DLVO SF helped us to explain 
many aspects of aggregation of disperse systems [13] and the mere detection of the structural 
hydration/hydrophobic forces is exceptionally important because such forces have been believed to explain    
a different character of lyophilic and lyophobic colloidal systems from the very beginning of colloid science 
as well as the origin of some aggregation processes (e.g. hydrophobic flocculation, shear flocculation, 
microflotation, etc.).  

The determination of surface forces between particles of disperse systems is however not easier than     
in the SFA or AFM. The problem is that the surface forces between freely moving and mutually encountering 
particles with a kinetic energy must be experimentally evaluated from the aggregation process (which is,      
in fact, the consequence of the surface forces themselves) – i..e. indirectly in principle. Therefore, the quality 
of information about the SFs between particles from their spontaneous aggregation is given by the adequacy 
of the aggregation model adopted. Of course, a fitness of the model is markedly influenced by a character     
of a disperse system under study, i.e. its particles (generally, the more complicated disperse system, the more 
complex and less adequate is the aggregation model).  

Experiments directed to the study of SF between particles in relatively diluted disperse systems (with 
the content of particles up to few %) can be preliminary divided into two limiting groups. Experiments aimed 
at detecting manifestations of aggregation such as the free settling and the height of sediment at a preset time 
or as a function of time (typical for micron-sized or coarser particles of unknown or undefined shape, size 
distribution, etc.). On one hand, these measurements are simple and widely spread due to their practical 
importance in evaluating SF and aggregation processes of real disperse systems in many industrial areas, but, 
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on the other hand, they cannot (owing to the incompleteness of pertinent theories of aggregation processes 
for such systems) provide the required (quantitative) information about individual types, especially the short-
ranged surface forces [14].  

On the other side, experiments aimed at observing and modeling the perikinetic aggregation of freely 
difusing submicronal (colloidal) synthetic particles of spherical shape, minimum shape and size distribution, 
porosity, etc. can determine SF quantitatively. These experiments nevertheless differ in the method               
of determining the aggregation model parameters and so in the reliability of such parameters for evaluating 
the SF. Obviously, a coagulation aggregation process in well defined colloidal systems is monitored             
by the turbidity or absorbance development after adding a coagulant (electrolyte, polymer, polyelectrolyte    
or surfactant). (Anyway, the sole turbidity or absorbance after an elapsed time had been determined also       
for well defined colloidal systems [15]; these experiments can serve only to determine the so-called critical 
coagulation concentration of the coagulant, ccc, when the potential energy barrier between colloids vanishes).  

Generally, SFs are evaluated by determining the so-called Fuchs stability ratio (a ratio of the rate 
constant of the so-called slow coagulation process hindered by the energy barrier, and that of the fast 
coagulation starting at the ccc, i.e. in absence of the barrier) [16], which relates theoretically the rate             
of the coagulation at the beginning of the coagulation and the SFs of spherical colloids. Obviously, the above 
(rather relative) rate constants of the dimer formation are determined by graphical constructing a tangent       
to the absorbance-time curve extrapolated into the beginning of the coagulation process [17]. A more precise 
way of determining the absolute rate constants seems to be the use of a model fitting the whole absorbance-
time dependence and providing kinetic constants (being simply equal to the half of the dimer formation rate 
constants, by definition) of the whole coagulation process. Another, rather complicated experimental 
procedures are also usable, detecting the coagulation kinetics by static and dynamic light scattering [18].       
In any case, despite of recent experiments determining the absolute coagulation rate constants for maximally 
ideal and well characterized colloidal spherical particles and entirely confirming the validity of the DLVO 
theory, the quantification of the short-ranged structural forces is still not available [19]. 

An original kinetic model of perikinetic coagulation of submicronal silica spheres of 75 nm diameter 
was successfuly verified by the author [20]. The size of the silica colloids was selected to maintain the RGD 
light scattering regime. The software model, provided kindly by Dr. A. Puertas from the University               
of Granada allowed us to determine the absolute coagulation rate constants by fitting the whole time change 
in the absorbance of the colloidal system, induced by the addition of an electrolyte (KCl) or surfactant 
(cetyltrimethyl-ammonium bromide, CTAB). Interestingly, the kinetic constant, being identical to that 
determined by others for silica [21], was found to be same for both the electrolyte- (Fig. 3) as well                  
as the surfactant-induced fast coagulation (Fig. 4), despite the fact that the wettability of the surface of silica 
particles was markedly influenced by the surfactant adsorption, as determined by their accumulation              
in hexadecane). This apparently confirms the validity of the DLVO theory (the fast coagulation occured 
exactly at the isoelectric point in the presence of CTAB) and does not support the idea about the existence    
of the (even short-ranged) structural hydration/hydrophobic SF, at least for the studied colloidal silica 
particles under given conditions. Experiments on the coagulation kinetics of model silica spheres of different 
origin and size in the presence of various cationic surfactants are under way.  
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Fig. 3.  Kinetic coagulation constant of silica colloids as a function 
of the KCl concentration. (from: Škvarla, J: Surface forces 
between colloidal silica spheres in the presence of electrolytes and 
cationic surfactants determined from absolute coagulation rate 
constants, in preparation for submitting in Langmuir). 

Fig. 4.  Kinetic coagulation constant of silica colloids as a function 
of the CTAB concentration at pH 4 (left curve) and 5 (right curve). 
(from: Škvarla, J.: Surface forces between colloidal silica spheres 
in the presence of electrolytes and cationic surfactants determined 
from absolute coagulation rate constants, in preparation for 
submitting in Langmuir). 
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The second method of evaluating the SFs, this time between different particles, was also proposed       
by the author [22]. This method is based on the detection of heterocoagulation by analysing                         
the electrophoretic light scattering (ELS) spectra of multicomponent mixtures of particles. This method was 
again verified for ideal colloidal particles of silica and (more hydrophobic) silica preliminary modified with 
aminopropyl. Fig.5 shows that the mean values of the monomodal zeta potential distribution of the silica and 
the silica/aminopropyl, as measured individually, differ from these of the bimodal zeta potential distributions 
of the silica-silica/ aminopropyl mixture at pH below ca. 6.6, indicating a heterocoagulation effect. It has 
been shown to be in agreement with theoretical calculations according to the DLVO theory, again not 
confirming the existence of the hydration/hydrophobic SF. In this case, however, for the combined 
hydrophilic/hydrophobic system, the surface thermo- 
dynamics itself predicts a very low interfacial energy 
and thus a very weak structural SF. Hetero-
coagulation experiments are presently made to study    
the role of surfactants in the interaction between 
different model particles in their mixtures.   
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Fig. 5.  Mean value of the monomodal zeta-potential distribution 
of individual silica spheres (lower full line) and individual silica-
aminopropyl spheres (upper full line), and the mean values         
of the bimodal zeta-potential distribution of their mixture (dotted 
lines) as a function of pH. (adapted from: Škvarla, J.: Electro-
kinetic properties of mineral mixtures, Acta Montanistica Slovaca, 
2003, 8, 1-9). 

 
 

Conclusion 
 

It follows from the above that, generally, in the study of SF operating in dispersions of particles, both 
direct experiments between macrosubstrates as well as indirect experiments between the particles have been 
utilizing. The possibility of getting a direct information about the surface forces from measurements between 
macroscopic surfaces is limited due to specific factors that influence such measurements and the inadequacy 
of the macroscopic surfaces themselves to the surface of particles in disperse systems by nature. From this 
point of view, straightforward studies of surface forces between particles in disperse systems should             
be preferred and/or paralleled with the direct measurements. In fact, there is not yet an agreement between 
the both kinds of experiments even for model colloidal systems. Moreover, since the surface forces between 
freely moving particles (being manifested through aggregation phenomena) are to be determined indirectly,    
a proper aggregation model has to be adopted. If such a model is applicable, the SFs can be determined 
immediately. The preliminary experiments on the coagulation kinetics of hydrophilic silica spheres with      
the diameter of 75 nm in the presence of a simple electrolyte and surfactant prove the DLVO theory and do 
not support the idea about the hydration/hydrophobic SF.  

 
 

References 
 

[1] Derjaguin, B. V. and Landau, L. Acta Physicochim. USSR, 1941, 14, 633; Verwey, E. J. W.; 
Overbeek, J. Th. G.: Theory of the Stability of Lyophobic Colloids; Elsevier. Amsterdam, 1948.  

[2] Ninham, B. W.: On progress in forces since the DLVO theory, Advan. Colloid Interface Sci., 1999, 
83, 1-17; Churaev, N. V.: Physicochemistry of surface phenomena, Uspekhi Khimii, 2004, 74,     
26-38. 

[3] Churaev, N. V., Boinovich, L. B., Derjaguin, B. V.: Dedication, Advan. Colloid Interface Sci., 
2003, 104, IX-XIII. 

[4] Derjaguin, B. V.: Poverchnostnye Sily i Graničnye Sloji Židkostej, Nauka, Moskva, 1983; 
Derjaguin, B. V.; Churaev N. V.; Muller, V. M.: Poverchnostnye Sily, Nauka, Moskva, 1985; 
Derjaguin, B. V.: Teoria Ustojčivosti Kolloidov i Tonkich Plenok, Nauka, Moskva, 1986; 
Israelachvili, J. N.: Intermolecular and Surface Forces, Academic Press, New York, 1985. 

[5] Craig, V. S. J.: An historical review of surface force measurement techniques, Colloids and 
Surfaces A., 1997, 130, 75-93. 

[6] Israelachvili, J. N.; Adams, G. E.: Nature, 262 (1976) 774; Israelichvili, J. N.; Adams, G. E. J. 
Chem. Soc., Faraday Trans., 1978, I 74, 975. 

[7] Binnig, G.; Quate, C. F.; Gerber, C. Atomic force microscope, Phys. Rev. Lett., 1986, 56, 930. 

9 



 
Jiří Škvarla: Theoretical and experimental study of surface forces in disperse systems 

[8] Ducker, W. A.; Senden, T. J.; Pashley, R. M. Direct measurement of colloidal forces using           
an atomic force microscope, Nature, 1991, 353, 239; Ducker, W. A.; Senden, T. J.; Pashley, R. M.: 
Measurement of forces in liquids using a force microscope, Langmuir, 1992, 8, 1831. 

[9] Horn, R. G.; Smith, D. T.; Haller, W.: Surface forces and viskosity of water measured between 
silica sheets, Chem. Phys. Letters, 1989, 162, 404; Chapel, J. P.: Electrolyte species-dependent 
hydratation forces between silica surfaces, Langmuir, 1994, 10, 4237; Vigil, G.; Xu, Z.; Steinberg, 
S.; Israelachvili, J.: Interactions of silica surfaces, J. Colloid Interface Sci., 1994, 165, 367; Ducker, 
W. A.; Senden, T. J.; Pashley, R. M.: Direct measurement of colloidal forces using an atomic force 
microscope, Nature, 1991, 353, 239; Parker, J. L.; Yaminski, V. V.; Claesson, P. M.: Surface 
forces between glass surfaces in cetyltrimethylammoniumbromide, J. Phys. Chem., 1993, 97, 7706; 
Attard, P. Bubbles, cavities and the long-ranged attraction between hydrophobic surfaces, J. Phys. 
Chem., 1994, 98, 8468; Rabinovich, Y. I.; Derjaguin, B.V.,: Direct measurement of forces              
of attraction of hydrophobized quartz fibers in aqueous KCl solutions, Colloid  Zurnal of the USSR, 
1987, 49, 682 (in Russian); Rabinovich, Y. I.;Yoon, R. H.: Use of atomic-force microscope for       
the measurements of hydrophobic forces between silanated silica plate and glass sphere, Langmuir, 
1994, 10, 1903; Pashley, R. M.; McGuiggan, P. M.; Ninham, B. W.; Evans, D. F.: Attractive forces 
between uncharged hydrophobic surfaces-direct measurements in aqueous solution, Science 
(Washington, D.C.), 1985, 229, 1088;  

[10] Škvarla, J. Hydrophobic interaction between macroscopic and microscopic surfaces. Unification 
using surface thermodynamics, Advan. Colloid Interface Sci., 2001, 91, 335.    

[11] Yakubov, G. E.; Butt, H. J.; Vinogradova, O.: Interaction forces between hydrophobic surfaces. 
Attractive jump as an indication of formation of "stable" submicrocavities, J. Phys. Chem., 2000, 
104, 3407; Ishida, N.; Sakamoto, M.; Miyahara, M.; Higashitani, K.: Attraction between 
hydrophobic surfaces with and without gas phase, Langmuir, 2000, 16, 5681; Evans, D. R., Craig, 
V. S. J., Senden, T. J.: The hydrophobic force: nanobubbles or polymeric contaminant?, Physica     
A - Statistical Mechanics and Its Applications, 2004, 339, 101-105. 

[12] Sakamoto, M.; Kanda, Y.; Miyahara, M.; Higashitani, K.: Origin of long-range attractive force 
between surfaces hydrophobized by surfactant adsorption, Langmuir, 2002, 18, 5713; Mahnke, J.; 
Stearnes, J.; Hayes, R. A.; Fornasiero, D.; Ralston, J.: The influence of dissolved gas on               
the interactions between surfaces of different hydrophobicity in aqueous media Part I. 
Measurement of interaction forces, Phys. Chem. Chem. Phys., 1999, 1, 2793; Ishida, N.; Kinoshita, 
N.; Miyahara, M.; Higashitani, K.: Effects of hydrophobizing methods of surfaces on                   
the interaction in aqueous solutions, J. Colloid Interface Sci., 1999, 216, 387; Meyer, E. E.; Lin, 
Q.; Hassenkam, T.; Oroudjev, E.; Israelachvili, J. N.: Origin of the long-range attraction between 
surfactant-coated surfaces, Proc. Natl. Acad. Sci. Unit. Stat. Amer., 2005, 102, 6839; Meyer, E. E.; 
Lin, Q.; Israelachvili, J.: Effects of dissolved gas on the hydrophobic attraction between surfactant-
coated surfaces, Langmuir, 2005, 21, 256. 

[13] Elimelech, M., Gregory, J., Jia, X.,.Williams, R. A.: Particle deposition & Aggregation, Butteworth 
Heinemann, 1998, 491 p.; Stechemesser, H., Dobias, B.: Coagulation and Flocculation, CRC Press, 
2005; Nguyen, A. V.; Schulze, J. H. Colloid Science of Flotation, Marcel Dekker, 2003,840 pp. 

[14] Akopova, O. V.; Eremenko, B. V. Stability of aqueous suspensions of quartz in solutions              
of electrolytes, Colloid J., 1992, 54, 661; Yotsumoto, H.; Yoon, R. H.: Application of extended 
DLVO theory. 1. Stability of rutile suspensions, J. Colloid Interface Sci., 1993, 157, 434; 
Yaminskii, V. V.; Shchukin, E. D.: Adhesion of particles and conditions for the thermodynamic 
stability of soils - organophilic silica in alcohol water-electrolyte medium, Colloid Journal            
of the USSR., 1986, 48, 834; Nanikashvili, P. M.; Yaminskii, V. V.: Coagulating action                 
of a cationic surfactant and electrolyte in aqueous dispersions of hydrophilic silica, Colloid Journal 
of the USSR, 1986, 48, 783; Shchukin, E. D.; Yaminskii, V. V.: On the conditions                          
of the thermodynamic stability of sols toward coagulation, Langmuir, 1987, 3, 968; Mikhailova, 
V.; Gerashchenko, I.: I. Stability and adsorption properties of suspensions of finely dispersed silica 
in the presence of cationic surfactants, Colloid J., 2002, 64, 583. 

[15] Allen, L. H.; Matijevič, E. J. Colloid Interface Sci., 1969, 31, 287; Allen, L. H.; Matijevič, E. J. 
Colloid Interface Sci., 1970, 33, 420; Depasse, J.; Watillon, A. J. Colloid Interface Sci., 1970, 33, 
430; Harding, R. D. J. Colloid Interface Sci., 1971, 35, 172; Depasse, J.: Coagulation of colloidal 
silica by alkaline cations: Surface dehydration or interparticle bridging ?, J. Colloid Interface Sci., 
1997, 194, 260. 

[16] Fuchs, N. A.: The mechanics of aerosols; Pergamon Press, The McMilan Co.: New York, 1964.  

10 



 
Acta  Montanistica  Slovaca     Ročník 10 (2005), mimoriadne číslo 1, 5-11 

[17] Zerrouk, R.; Foissy, A.; Mercier, R.; Chevallier, Y.; Morawski, J-C.: Study of Ca2+ induced silica 
coagulation by small-angle scattering, J. Colloid Interface Sci., 1990, 139, 20; Penners, N. H. G., 
Koopal, L. K.: The effect of particle-size on the stability of hematite (alpha-Fe2O3) hydrosols, 
Colloids Surfaces, 1987, 28, 67-83; Maroto, J. A.; de las Nieves, F. J.: Estimation of kinetic rate 
constants by turbidity and nephelometry techniques in a homocoagulation process with different 
model colloids, Colloid Polymer Sci., 1997, 275, 1148; Puertas, A. M.; de las Nieves, F. J.: 
Colloidal stability of polymer colloids with variable surface charge, J. Colloid Interface Sci., 1999, 
216, 221; de Witt, J.A., van de Ven, T.G.M.: The effect of neutral polymers and electrolyte          
on the stability of aqueous polystyrene latex, Advan. Colloid Interface Sci., 1992, 42, 41-64; 
Snoswell, D. R. E.; Duan, J.; Fornasiero, D.; Ralston, J.: Colloid stability and the influence           
of dissolved gas, J. Phys. Chem., 2003, 107, 2986. 

[18] Holthoff, H., Egelhaaf, S. U., Borkovec, M., Schurtenberger, P., Sticher, H.: Coagulation rate 
measurements of colloidal particles by simultaneous static and dynamic light scattering, Langmuir, 
1996, 12, 5541-5549; Holthoff, H., Borkovec, M., Schurtenberger, P.: Determination of light-
scattering form factors of latex particle dimers with simultaneous static and dynamic light 
scattering in an aggregating suspension, Physical Review E., 1997, 56, 6945-6953; Holthoff, H., 
Schmitt, A., Fernández-Barbero, A., Borkovec, M., Cabrerízo-Vílchez, M. A., Schurtenberger, P., 
Hidalgo-Álvarez, R.: Measurement of absolute coagulation rate constants for colloidal particles: 
Comparison of single and multiparticle light scattering techniques, J. Colloid Interface Sci., 1997, 
192, 463-470. 

[19] Behrens, S. H.; Borkovec, M.: Schurtenberger. Aggregation in charge-stabilized colloidal 
suspensions revisited, Langmuir, 1998, 14, 1951; Behrens, S. H.; Semmler, M.; Borkovec, M. 
Progr. Colloid Polym. Sci., 1998, 110, 66; Borkovec, M., Behrens, S. H.: Stabilization of Aqueous 
Colloidal Dispersions: Electrostatic and Steric Forces, Encyclopedia of Colloid and Surface 
Science, Hubbard A. (ed.), Dekker Publ., 2002. 

[20] Škvarla, J., Surface forces between colloidal silica spheres in the presence of electrolytes             
and cationic surfactants determined from absolute coagulation rate constants Langmuir, predložené 
na publ. 

[21] Killmann, E.; Adolph, H. Coagulation and flocculation measurements by photon-correlation 
spectroscopy-colloidal SiO2 bare and covered by polypropylene oxide, Colloid Polym. Sci., 1995, 
273, 1071; Barany, S.; Stuart, M. A. C; Fleer, G. J. Coagulation rate of silica dispersions 
investigated by single-particle optical sizing, Colloids Surfaces, A: Physicochem. Engineer. 
Aspects, 1996, 106, 213; Kobayashi, M.; Juillerant, F.; Galletto, P.; Bowen, P.; Borkovec, M. 
Langmuir, (in press). 

[22] Škvarla, J.: Detection of the heterocoagulation-stability transition in binary colloidal systems        
by electrophoretic light scattering. 1. Silica-silica/ aminopropyl system, Colloids and Surfaces.        
A: Physicochemical and Engine-ering Aspects, 1996, 110, 135-139; Škvarla, J.: Evaluation           
of mutual interactions in binary mineral suspensions by means of electrophoretic light scattering, 
International Journal of Mineral Processing, 1996, 48, 95-109. 

11 


	Theoretical and experimental study of surface forces in disp
	Jiří Škvarla
	Teoretické a experimentálne štúdium povrchových síl v disper
	Introduction
	Measurements of surface forces between macroscopic surfaces
	Measurements of hydration/hydrophobic force between macrosco
	Measurements of surface forces between microscopic surfaces 
	Conclusion
	References




