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Partial eigenvalue assignment problem of linear control systems using
orthogonality relations

Mohamed A. Ramadan® and Ehab A. El - Sayed?

Problém priradenia parcialnych charakteristickych hodn6t linearnych riadiacich systémov pouzitim ortogonalnych zavislosti
The partial eigenvalue assignment is the problem of reassigning a part of the open-loop spectrum of a linear system by a feedback
control, leaving the rest of the spectrum invariant. In the paper, we propose a novel solution to the partial eigenvalue assignment

problem of linear control system using orthogonality relations between eigenvectors of the state matrix A our solution can
be implemented with only a partial knowledge of the spectrum and the corresponding eigenvectors of the linear system. We show that,
the number of eigenvalues and eigenvectors that need to remain unchanged will not be affected by the feedback. We prove this,
the feedback vector must be of real form. A numerical example is given to illustrate the proposed method.
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1. Introduction

Consider the linear-time invariant single-input control system

X = Ax+bu (1.1)
where A isa Nx N real non-symmetric constant matrix, D is a n-column vector and U is a scalar function
of t. It is known [2,13] that, if the pair (A,D) is controllable we can choose a feedback vector f such that

the closed loop X = (A —Dbf T )X has a desired set of eigenvalues. This closed loop system can be achieved

by applying a state-feedback control U = —f TX. Such problem is as known the single-input eigenvalue

assignment problem, which is of great importance in many applications in the control theory; see for example
[17].

This single-input eigenvalue assignment problem is studied through the conventional numerical methods
(e.g. the implicit QR and real Schur methods as in [8,9] ). However, in control problems of large and sparse

structure it is often desirable to modify only a few of the eigenvalues of the open-loop system and leave
the rest unchanged. Such problem is called the partial pole assignment problem.

Mathematically given the matrix A whose spectrum {ﬂl s Ay s As Ay ,---,/1”} and set
{/Ul sy, o }, closed under complex conjugation then the partial eigenvalue assignment problem for

the linear control system (1.1) requires us to find the feedback vector f such that spectrum of (A—bf ")
is {:Ul sy s s ey A sty A } Through this paper we assume that the pair (A, b) is controllable.

Many authors [6,10,12] introduced projection algorithms for solving the partial eigenvalue assignment
problem of the linear control system (1.1). where the technique proposed by Datta and Saad [6] first solves

a Sylvester- type equation AX — XH =GC (H is an upper Hessenberg matrix constructed using
Arnoldi's algorithm) such that the spectrum of H is {,ul sy i }, the matrix G is of the special form

G= (0,0, --+,0, b) and X is an orthonormal matrix obtained from the orthonormal matrix V constructed

from Arnoldi's algorithm where VT AV = H , by multiplying X with a chosen scalar. The Sylvester-type
equation is then rewritten in an equivalent form so that the matrix X will be the basis of the invariant

subspace of A, and the required feedback vector f = Xen, where en 2(0,0,'-',0,1)1-, so that
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the spectrum of (A —bf " ) will contain {},ll, W, -, Um } While the techniques in the methods [10,12] are

similar and depend mainly on the notion of computing an orthonormal basis, using Arnoldi's algorithm
as in [10] or using the partial Schur QR factorization as in [12], of an invariant subspace associated with

the eigenvalues that are needed to be assigned and then apply one of the known and suitable methods to solve
a resulting associated eigenvalue assignment problem of a smaller dimension. There are numerical
difficulties associated with these projection algorithms.

In our present method, the solution of the partial eigenvalue assignment problem is obtained using

orthogonality relations between eigenvectors of a matrix A [3,11].
The solution of the partial eigenvalue assignment problem can be obtained by using only a partial

knowledge of eigenvalues and eigenvectors of the matrix A . This solution allows us to work directly with
the matrix A without using any type of projection

2. Orthogonality Relations between the Eigenvectors of a Matrix

In this section, we introduce orthogonality relations between eigenvectors for the eigenvalue problem
AX = AX. 2.1

Definition 1
Let A be an NXN matrix. A scalar A is called an eigenvalue and a non—zero column vector X is
called the right eigenvector corresponding to A if

AX = AX (2.3)

Definition 2
Let A be an NXN matrix. A scalar A is called an eigenvalue and a non —zero column vector
Y satisfying
yrA=ay" (2.4)

is called the left eigenvector corresponding to A, where Y " is the conjugate transpose of the vector VY .

Definition 3
The pairs (ﬂ,, X) and (/7,, y) are called, respectively, right and left eigenpairs of A.

Datta and D.R. Sarkissian [3,11] stated the orthogonality relations of the eigenvectors of a matrix A
as given in the theorem 1 below.

Theorem 1 [3,11] (Orthogonality of the Eigenvectors of a Matrix A)
Let A,,4,, -, A, be the eigenvalues of matrix A and let X and Y be, respectively, the right and

the left eigenvector matrices. Assume  that {ﬂl,---,ﬂm}ﬂ{ﬂm+l,---,ﬂn}=(D. The partition
X =(X15x2) and Y =(Y1’Y2)’ where X, =(X15”"Xm)’ X, :(Xm+1"”’xn)’ Y, =(y1"”5ym)

and Y2 = (ym+1""’ yn)
Then

YX, =0 (2.5)
and
YTAX, =0 (2.6)

If, in addition, A is real symmetric, then

XX, =0and X]AX, =0 2.7)
In the next section, we solve the partial eigenvalue assignment problem of (1.1) by using
the orthogonality relation (2.6).

17



Mohamed A. Ramadan and Ehab A. El — Sayed: Partial eigenvalue assignment problem of linear control systems using orthogonality
relations

3. Partial Eigenvalue Assignment Problem

Suppose that A€ R™" be a non-symmetric matrix. Let the eigenvalue problem AX; = A4,X;

i =1,2,---,N, be written in the matrix form:

AX — XA =0 (3.1
where X = (Xl,Xz,---,Xn)e C™ A= diag(/ll,/lz,--.,zn)e C™" and A, are distinct.
Given M complex numbers {,ul sy, M } closed under complex conjugation, M < N and a vector

b e R", we are required to find f € R" such that the matrix (A—Dbf ") has a spectrum.

{,Lll,,le,"',ﬂm,lmﬂ,"',in} (3.2)

Let us partition the NXN right eigenvector matrix X , the NXN left eigenvector matrix Y H
and Nx N eigenvalues matrix A as follows:

H
X=(X, X,) y" {11“)’ A =diag(A,,A,)

2

>

where X, :(le"'axm); 2 :(Xm+1>"’=xn)v Y, :(yla"'sym) and Y, :(ym+1a"'9yn)
with A, =diag(4,,---,4 ) and A, =diag(4,,,,---,4,).

Theorem 2
1f {4, A}V {A s s Ay = @ and the feedback vector f defined by

f'=pY"A (3.3)
A A of the matrix (A—bf") are

m+2%°°°27"n

then for any choice of [, the last N —M eigenvalues A

m+1°

the same as those of the matrix A.

Proof
Let (X , A)be the eigenvector-eigenvalue matrix pair of the matrix A,
then
AX - XA =0.

Our goal is to prove that:
(A—bfT)Xz—XzA2 =0. (3.4).
By substituting f ' = BY," A in the left hand side (3.4), we obtain
(A=bf T)X, = X,A, = AX, — X,A, —bA(Y" AX,).
Since AX, — X,A, =0 and Y," AX, =0 from the theorem 1, thus
(A=bf )X, = X,A, =0,

The theorem is then proved.

3.1 Choosing B
In order to use the theorem 2 to solve the partial eigenvalue assignment problem, we need to choose

[ that moves {ll,/ﬁtz;“,lm }of A to {ﬂlnuze"'aﬂm} in (A—Dbf T), if it is possible. If there is such
/3, then exists an eigenvector matrix Z € C™";

Z=(z.2,,2,), z,#0, j=12,--,m.
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and matrix D = diag (,u1 A ,---,,um) such that
(A-bfT)z-2zD =0 (3.5)
Substituting in (3.5) for f ' = ﬂYlH A, we have
AZ -bpBYFAZ -ZD =0
and then
AZ -ZD =bpY"AZ =bpW" =hc" (3.6)
where W™ =Y"AZ and c=Wp" is a vector that will depend on the scaling chosen for

the eigenvectors in Z . To obtain Z , we choose the vector C as C= (l,l,---,l)T. Then equation (3.6)
becomes

AZ -ZD =b(L1, ..., 1).
We can solve for each of the eigenvectors Z; using the equations
(A—g;1)z; =b j=12,--,m 3.7)
So, we obtain the eigenvectors of Z , and hence compute the matrix W from W H =Y1H AZ .
We solve the M X M square linear system
wg" =(11,---1) (3.8)

for " | and hence we can determine the vector f .

4. Explicit Expression for g

In the next theorem, we obtain an explicit expression for [ using only a partial knowledge

of eigenvalues {/11 s Ay --,ﬂm} and the associated left eigenvectors {y1 TN ym} of the matrix A. Our

proof to this theorem is similar to the proof of the theorem introduced in [4,5] for the symmetric definite
quadratic pencil case.

Theorem 3
Suppose AX; = A4, X;

1772
B of B as

1 <i<n has the form (3.1) and f is chosen as in (3.3) with the components

A u,Hﬂ ,U.

J=1L2,---,m, 4.1)
b’ yJ 4;

ﬂj =
I¢j
then the matrix (A—bf T) has the spectrum {,ul sy s A A, } and its first M eigenvectors

can be scaled to satisfy (A K ) =b  j=12,---,m

m+1s"

Proof.
We need only to show
@, (8)=[(A=bf T )= 1]z, =0, k=1,2,--.m. 42)
where
(A-u 1)z, =D, (4.3)

Substituting the expression f ' = p Yl Ain ©, (ﬂ ) gives

d)k(ﬂ):[(A—,ujl)—bﬂYlH A]Zk

Then, from (4.3), we have

,()=b- by, Alz,
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Now, substituting for 3 j using (4.1) gives

then

The j-th column of (2.4) can be written as

A
Hy _ H
Y; | =Y; /1—, /11. # 0.
i
Hence for any choice of 1 <K, j <m,

Y (A pg1)= y[Au(fjJ

Y (A= )=y} (4, uk{fj- (44)

Substituting (4.4) into the last expression of @, (,5' ) gives

then

and using (4.3) we get

k =1
|==Jk

A — U,

_ 4 _luj lul(T_
ha beTw ~ A .H ')'
i#],k

Canceling the common term, we get

S P
= Ay
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In [5] it is proved that

Hlj — K
m =l
=1 k=12,-,m, (4.5)
=0 i EA

for any sets of {ii }21 and {,ui }Imz . in which the A, are distinct, and thus @, (,3 ) vanishes, as required.
This completes the proof of the theorem.

From the expression (4.1) it is clear that sufficient conditions for the existence of £, and consequently
for a solution to the partial eigenvalue assignment problem to exist:
a, No ﬁj, Jj=1,2,---,m vanishes,
b, The {ﬂi }:n:l are distinct,

¢, The vector b must be not orthogonal to Vi j=12,---,m.

The above discussion leads us to formulate the following algorithm for our solution of the partial
eigenvalue assignment problem.

Algorithm The single-input partial eigenvalue assignment algorithm

Inputs: A isan Nx N real non-symmetric constant matrix, D is an n-vector and D = diag (,u1 s,y My ),
closed under a complex conjugation.

Assumption: The numbers £¢,,+, f, ;ﬂl I ﬂn are all distinct and closed under a complex conjugation,

where A ,A,,-+, A

, are the eigenvalues of the matrix A.

Output: The feedback vector f such that the spectrum of the matrix (A— bf T ) is
{1ttt Asy s A | where A 1, 0+, A are the last N —M eigenvalues of A.

Step 1. Obtain the first M eigenvalues /11,12,-'-,1 of the matrix A that need to be reassigned

m
and the corresponding left eigenvectors Y,,Y,, >, Y.

Step 2. Compute the explicit expression for [ where its components are given as:

1 A=y A -
= , j=12,---,m.
d b'y, A H/lj—zi :

]

l;j
Step 3. Form
fT= ﬂYlH A.

f .

5. Real Form of a Feedback Vector

In this section we prove that the feedback vector f must be real, if all {ﬂl,ﬂz,---,ﬂ,m}

and {,ul sy, U } are closed under a complex conjugation.

Theorem 4
Let {4, Ay, A} and {1, 1, 11, } be two disjoint sets of complex numbers, closed under

a complex conjugation and let {ﬂl,ﬁz,“-,ﬂm} are a part of the eigenvalues of the matrix A with

A e R™. We assume that the non—zero column vectors {yl, yz,---ym} be such that Y\ = Y;. Then
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B = B whenever A; =4, and fi; =y, j=12,---,m, J#K where f; is a component of /3 as
in (4.1).

Proof
We take
LAy —H A -
ﬂ' = _ J s J:1923'“9m' (51)
. bTyj ﬂ,j H/Ij A
i%j
then B B
_ 1 A - ™A — 4 )
L. = ) 2 j=12,---,m. (5.2)
bobTy; 4 E[ i~
Since /Tj = A Hj =ty and Y, =Y, then
) U A=y A= M
= L= k=12,---,m, 5.3
h b’y A H/l 5, P G

ik
and hence ,Ej =p. J.k=12,---,m.  j#K. The theorem is then proved.
Now, in the following theorem we describe how to transform a complex conjugate set of /3 and the set

of left eigenvectors YIH to the real ones. This will be required to obtain the real feedback vector f .

Theorem 5
Let {/11,2,2,--~,/1m} be a set of complex numbers, closed under a complex conjugation,

{ﬁl,ﬂz,---,ﬂm} and let vectors {yl,y2,~--ym} be such that Y, =Y; and S, =f3; whenever
2 =2 j=12m, j=k.
Then
I- There exists a nonsingular matrix T € C™™" such that
T =T", B.=pT", Y2 =TV, (5.4)
where B=1{B,, By, B} €C"™ and Y, ={y,,Y,,"** Y, } € C™" and both S and Y,; are

real matrices.
I1-There exists a real feedback vector f such that

f' =B YR A (5.5)
Proof
I- Define ~ ~
S 0 0
0
T=(0 0 . . i (5.6)
. 0
o0 -~ 0 S
where

1 W L1 i
|and ST =— . Then the matrix S satisfies:

Al

1 i
H 10 -1 H
S"S= t Thus the matrix T is nonsingular where T~ =T .

22



Acta Montanistica Slovaca Ro¢nik 11 (2006), ¢islo 1, 16-25

Rewrite ﬂZ{ﬂl,ﬂz,---,ﬂm} in the other form ﬂ:{ﬂl,Z’ﬂ3,4"”’IHj,,jJrl’”"ﬂm—l,m}
whereﬂj,m:{ﬂj,ﬂj“}. Since ,BKZ,EJ-, we assume that ﬂm:/?jand B;=a+ib, then
B, =1a+ib,a—ib}

and

B;aS" ={a+ib,a-ibjs" =v2{a,b}
ﬂTH :{ﬂLzSHaﬂ3,4SHa"',ﬂj,j+1SHa"'aﬂmfl,mSH}:ﬂR-

Set Y, ={Y,, Voo Yy} in the block form Y, =1y, Ysasss Y juor s Ymam | Where
Yiia ={yj,yj+l}. Since Y\ =Y, we assume that Y, , =Y; and Yy; =C;+id;, where both
]Tand dj :[dlj’dzj,.--,dnj,]Tarecolumnsthen
Y =1, +id;.c, —id, .

YiuS" ={Cj +1d;,¢; _idj} " =\/§{C1=dj}
YITH :{yl,ZSH,y3’4SH9"':yj,j+ISH:“.7ym—1,mSH}:YIR' .7

By using the transpose conjugate of (5.7), we obtain Y,§ =TY,"

C] = [Cljﬂczjﬂ'“=cnj9

I1- Now, we show that the feedback vector f must be real. In the section 3, we showed that

the spectrum of the matrix (A— bf T ) is {yl,,uz Ry - A ﬂn} suchthat f = ﬂYlH A.

m+l1 2 e b
Since

Be=pTH and Y7 =TYH,
then
T H HTy H H
f' =LY "A=p0T"TY, A= LYz A
where both [, and Yl'; are real matrices. Then, there is a real feedback vector
T H
f' =B YirA
such that the spectrum of the matrix (A —bf " ) is {,u1 sl sty oy Aot "0 Ay } The theorem is proved.

Remark:
Clearly, if all {ﬂ, i }rjn:l are real, then YlH is real as well. If, in addition, all {,u j} are real, then

m
j=1

both £ and f are also real.
6. A numerical Example

We choose a randomly generated matrix A (size 8) and a randomly vector D as follows:

[0.8214 0.9355 0.1389 0.4451 0.8381 0.3046 0.3784 0.8180]
0.4447 09169 0.2028 0.9318 0.0196 0.1897 0.8600 0.6602
0.6154 0.4103 0.1987 0.4660 0.6813 0.1934 0.8537 0.3420
0.7919 0.8936 0.6038 0.4186 0.3795 0.6822 0.5936 0.2897
0.9218 0.0579 0.2722 0.8462 0.8313 0.3028 0.4966 0.3412
0.7382 0.3529 0.1988 0.5252 0.5028 0.5417 0.8998 0.5341
0.1763 0.8132 0.0153 0.2026 0.7095 0.1509 0.8216 0.7271
10.4057 0.0099 0.7468 0.6721 0.4289 0.6979 0.6449 0.3093|
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10.9501 |
0.2311
0.6068
0.4860
0.8913
0.7621
0.4565
0.0185 The matrix A has eigenvalues shown in Tab. 1.

Eigenvalues of A

-0.2035 + 0.6192i

-0.2035 - 0.61921

0.6823 + 0.02251

0.6823 - 0.0225i

4.1633

0.3323

0.0862

-0.6793

Now, we assign the first M =2 eigenvalues A,,4, to the conjugate pair My = —3+1. Using
the explicit formula (4.1) gives
B =[-40.0110-6.1360i -40.0110+ 6.1360i],

from which we compute the feedback vector f , in view of (3.3) as:

-11.2870 As expected, in the theorem 5, f must be real.
-8.8118
12.5617
f 20.7621
| -8.3749
2.4033
-12.7117
L 4.1311 | The eigenvalues of the matrices A and (A —bf " ) are shown in Tab. 2.
Eigenvalues of A Eigenvalues of (A —Dbf ' )
-0.2035 +0.6192i -3.0000 + 1.0000i
-0.2035 - 0.6192i -3.0000 - 1.0000i
0.6823 + 0.0225i 0.6823 + 0.0225i
0.6823 - 0.0225i1 0.6823 - 0.0225i1
4.1633 4.1633
0.3323 0.3323
0.0862 0.0862
-0.6793 -0.6793

24



Acta Montanistica Slovaca Ro¢nik 11 (2006), ¢islo 1, 16-25

7. Conclusion

In this paper, we derived an explicit solution to the partial eigenvalue problem by using one

of the orthogonality relations between the eigenvectors for the linear pencil AX — AX = 0. We need only

a partial knowledge of the spectrum (and the associated left eigenvectors) of the matrix A. These
eigenvalues and eigenvectors are required to be reassigned. We proved that the solution (feedback vector f )

for this problem is in the real form.
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