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Partial eigenvalue assignment problem of linear control systems using 

orthogonality relations 
 
 

Mohamed A. Ramadan1 and Ehab A. El - Sayed2

 
 

Problém priradenia parciálnych charakteristických hodnôt lineárnych riadiacich systémov použitím ortogonálnych závislostí  
The partial eigenvalue assignment is the problem of reassigning a part of the open-loop spectrum of a linear system by a feedback 

control, leaving the rest of the spectrum invariant. In the paper, we propose a novel solution to the partial eigenvalue assignment 
problem of linear control system using orthogonality relations between eigenvectors of the state matrix . Our solution can               
be implemented with only a partial knowledge of the spectrum and the corresponding eigenvectors of the linear system. We show that, 
the number of eigenvalues and eigenvectors that need to remain unchanged will not be affected by the feedback. We prove this,            
the feedback vector must be of real form. A numerical example is given to illustrate the proposed method. 
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1. Introduction  
 

Consider the linear-time invariant single-input control system  
 

buAxx +=&          (1.1) 
where  is a  real non-symmetric constant matrix, b  is a n-column vector and u  is a scalar function 
of 

A nn×
t . It is known [2,13] that, if the pair  is controllable we can choose a feedback vector  such that 

the closed loop  has a desired set of eigenvalues. This closed loop system can be achieved 

by applying a state-feedback control . Such problem is as known the single-input eigenvalue 
assignment problem, which is of great importance in many applications in the control theory; see for example 
[1,7]. 

),( bA f
xbfAx T )( −=&

xfu T−=

This single-input eigenvalue assignment problem is studied through the conventional numerical methods 
(e.g. the implicit  and real Schur methods as in [8,9] ). However, in control problems of large and sparse 
structure it is often desirable to modify only a few of the eigenvalues of the open-loop system and leave     
the rest unchanged. Such problem is called the partial pole assignment problem. 

QR

Mathematically given the matrix  whose spectrum A { }nmm λλλλλ ,,,,,, 121 LL +  and set 

{ m}µµµ ,,, 21 L , closed under complex conjugation then the partial eigenvalue assignment problem for  

the linear control system (1.1) requires us to find the feedback vector  such that spectrum of    

is {
f )( TbfA−

}nmm λλµµµ ,,,,,, 121 LL + . Through this paper we assume that the pair ( )bA,  is controllable.  
Many authors [6,10,12] introduced projection algorithms for solving the partial eigenvalue assignment 

problem of the linear control system (1.1). where the technique proposed by Datta and Saad [6] first solves    
a Sylvester- type equation  (GCXHAX =− H  is an upper Hessenberg matrix constructed using 
Arnoldi's algorithm) such that the spectrum of H  is { }mµµµ ,,, 21 L

bG ,0,,0,0 L=
, the matrix G  is of the special form 

 and ( ) X  is an orthonormal matrix obtained from the orthonormal matrix V  constructed 

from Arnoldi's algorithm where , by multiplying HAVV T = X  with a chosen scalar. The Sylvester-type 
equation is then rewritten in an equivalent form so that the matrix X will be the basis of the invariant 

subspace of , and the required feedback vectorA mXef = , where ( )Tme 1,0,,0,0 L= , so that              
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the spectrum of ( )TbfA −  will contain{ }mµµµ ,,, 21 L .  While the techniques in the methods [10,12] are 
similar and depend mainly on the notion of computing an orthonormal basis, using Arnoldi's algorithm        
as in [10] or using the partial Schur factorization as in [12], of an invariant subspace associated with          
the eigenvalues that are needed to be assigned and then apply one of the known and suitable methods to solve 
a resulting associated eigenvalue assignment problem of a smaller dimension. There are numerical 
difficulties associated with these projection algorithms. 

QR

In our present method, the solution of the partial eigenvalue assignment problem is obtained using 
orthogonality relations between eigenvectors of a matrix  [3,11].  A

The solution of the partial eigenvalue assignment problem can be obtained by using only a partial 
knowledge of eigenvalues and eigenvectors of the matrix . This solution allows us to work directly with 
the matrix  without using any type of projection  

A
A

 
2. Orthogonality Relations between the Eigenvectors of a Matrix 

 
In this section, we introduce orthogonality relations between eigenvectors for the eigenvalue problem 
 

xAx λ= .        (2.1) 
 

Definition 1 
Let  be an  matrix. A scalar A nn× λ  is called an eigenvalue and a non–zero column vector x  is 

called the right eigenvector corresponding toλ  if 
 

xAx λ=          (2.3) 
 

Definition 2 
Let  be an A nn×  matrix. A scalar λ  is called an eigenvalue and a non –zero column vector            

 satisfying y
HH yAy λ=         (2.4) 

is called the left eigenvector corresponding to λ , where  is the conjugate transpose of the vector . Hy y
 
Definition 3 

The pairs ( x, )λ  and ( )y,λ  are called, respectively, right and left eigenpairs of . A
Datta and D.R. Sarkissian [3,11] stated the orthogonality relations of the eigenvectors of a matrix      

as given in the theorem 1 below. 
A

 
Theorem 1 [3,11] (Orthogonality of the Eigenvectors of a Matrix ) A

Let nλλλ ,,, 21 L  be the eigenvalues of matrix  and let A X  and Y  be, respectively, the right and   

the left eigenvector matrices. Assume that { } { } Φ=∩ + nmm λλλλ ,,,1 L

)
,1 L . The partition 

 and , where( )21 , XXX = ( 21 ,YYY = ( )mxxX ,,11 L= , ( )nm xxX ,,12 L+= ,  

and . 

( )myyY ,,11 L=
( )nm yyY ,,12 L+=

Then  
021 =XY H         (2.5) 

and 
021 =AXY H         (2.6) 

If, in addition,  is real symmetric, then A
 

021 =XX T  and       (2.7) 021 =AXX T

In the next section, we solve the partial eigenvalue assignment problem of (1.1) by using                     
the orthogonality relation (2.6). 
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3. Partial Eigenvalue Assignment Problem  

 
Suppose that nnRA ×∈  be a non-symmetric matrix. Let the eigenvalue problem iii xAx λ=    

, be written in the matrix form: ni ,,2,1 L=
 

0=Λ− XAX         (3.1) 
where  , ( ) nn

n CxxxX ×∈= ,,, 21 L ( ) nn
n Cdiag ×∈=Λ λλλ ,,, 21 L  and iλ  are distinct. 

Given  complex numbers {m }mµµµ ,,, 21 L  closed under complex conjugation,  and a vector 

, we are required to find  such that the matrix  has a spectrum. 

nm ≤
nRb∈ nRf ∈ )( TbfA−

 
{ nmm }λλµµµ ,,,,,, 121 LL +       (3.2) 

Let us partition the  right eigenvector matrix nn× X , the nn×  left eigenvector matrix HY           
and  eigenvalues matrix  as follows: nn× Λ

 

( )21 XXX = ,  ,  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= H

H
H

Y
Y

Y
2

1 ( )21 ,ΛΛ=Λ diag  

where ;  ,  ( )mxxX ,,11 L= ( )nm xxX ,,12 L+= ( )myyY ,,11 L=  and  ( )nm yyY ,,12 L+=  

with ( )mdiag λλ ,,11 L=Λ  and ( )nmdiag λλ ,,12 L+=Λ . 
 
Theorem 2 

If { } { } Φ=∩ + nmm λλλλ ,,,, 11 LL  and the feedback vector  defined by f
 

AYf HT
1β=         (3.3) 

then for any choice of β ,  the last  eigenvalues mn − nmm λλλ ,,, 21 K++  of the matrix  are    

the same as those of the matrix . 

)( TbfA−
A

 
Proof 

Let be the eigenvector-eigenvalue matrix pair of the matrix , ( Λ,X ) A
then 

0=Λ− XAX . 
Our goal is to prove that: 
 

( ) 0222 =Λ−− XXbfA T .      (3.4). 

By substituting  in the left hand side (3.4), we obtain  AYf HT
1β=

( ) ( )21222222 AXYbXAXXXbfA HT β−Λ−=Λ−− . 

Since 0222 =Λ− XAX  and  from the theorem 1, thus 021 =AXY H

( ) 0222 =Λ−− XXbfA T . 
The theorem is then proved. 

 

3.1 Choosing β  
In order to use the theorem 2 to solve the partial eigenvalue assignment problem, we need to choose     

β  that moves { }mλλλ ,,, 21 L of  to { }A mµµµ ,,, 21 L  in , if it is possible. If there is such )( TbfA−

β ,  then exists an eigenvector matrix ; mnCZ ×∈
( )mzzzZ L,, 21= ,      .,,2,1,0 mjz j L=≠  
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and matrix ( )mdiagD µµµ ,,, 21 L=  such that 

( ) 0=−− ZDZbfA T        (3.5) 

Substituting in (3.5) for , we have AYf HT
1β=

01 =−− ZDAZYbAZ Hβ  
and then 

HHH bcWbAZYbZDAZ ===− ββ 1     (3.6) 

where  and is a vector that will depend on the scaling chosen for                     

the eigenvectors in 

AZYW HH
1= HWc β=

Z . To obtain Z , we choose the vector  as c ( )Tc 1,,1,1 L= . Then equation (3.6) 
becomes 

( )1,,1,1 KbZDAZ =− . 

We can solve for each of the eigenvectors using the equations jz
( ) bzIA jj =− µ          mj ,,2,1 L=      (3.7) 

So, we obtain the eigenvectors of Z , and hence compute the matrix W  from .          
We solve the  square linear system 

AZYW HH
1=

mm×
( THW 1,,1,1 L=β )        (3.8) 

for , and hence we can determine the vector . Hβ f
 

4. Explicit Expression for β  
 

In the next theorem, we obtain an explicit expression for β  using only a partial knowledge                  

of eigenvalues { m}λλλ ,,, 21 L  and the associated left eigenvectors { }myy ,,1 L  of the matrix . Our 
proof to this theorem is similar to the proof of the theorem introduced in [4,5] for the symmetric definite 
quadratic pencil case.  

A

 
Theorem 3 

Suppose iii xAx λ= ,  has the form (3.1) and  is chosen as in (3.3) with the components ni ≤≤1 f

jβ  of β  as 

mj
yb

m

ji
i ij

ij

j

jj

j
Tj ,,2,1,1

1

L=
−

−−
= ∏

≠
= λλ

µλ
λ
µλ

β ,    (4.1) 

then the matrix  has the spectrum )( TbfA− { }nmm λλµµµ ,,,,,, 121 LL +  and its first  eigenvectors 

can be scaled to satisfy 

m
( ) bzIA jj =− µ       mj ,,2,1 L= . 

 
Proof.  

We need only to show 
( ) ( )[ ] .,,2,1,0 mkzIbfA kk

T
k L==−−=Φ µβ     (4.2) 

where 
( ) bzIA kk =− µ .       (4.3) 

Substituting the expression  in AYf HT
1β= ( )βkΦ  gives 

 
( ) ( )[ ] k

H
jk zAYbIA 1βµβ −−=Φ . 

Then, from (4.3), we have 
 

 ( ) [ ] k
H

k zAYbb 1ββ −=Φ  
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Now, substituting for jβ  using (4.1) gives 

( ) k

m

j

H
j

m

ji
i ij

ij

j

jj

j
Tk zAy

yb
bb

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−

−−
−=Φ ∑ ∏

=
≠
=1 1

1
λλ
µλ

λ
µλ

β  

( ) k
j

m

j
kj

H
j

m

kji
i ij

ij

kj

jj

j
T zAy

yb
bb

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−

−

−

−

−
−= ∑ ∏

=
≠
= λ

µλ
λλ
µλ

λλ
µλ

1
,

1

1
, 

then 

( ) k
j

kj
H
j

m

j

m

kji
i ij

ij

kj

jj

j
T zAy

yb
bb

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−

−

−

−
−= ∑ ∏

=
≠
= λ

µλ
λλ
µλ

λλ
µλ

1
,

1

1
. 

The j-th column of (2.4) can be written as 

.0, ≠= j
j

H
j

H
j

AyIy λ
λ

 

Hence for any choice of  ,,1 mjk ≤≤

( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=−

j
k

H
jk

H
j

AAyIAy
λ

µµ , 

then 

( ) ( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=−

j
kj

H
jk

H
j

AyIAy
λ

µλµ .     (4.4) 

Substituting (4.4) into the last expression of ( )βkΦ  gives 

( ) ( ) kk
H
j

m

j

m

kji
i ij

ij

kj

jj

j
Tk zIAy

yb
bb

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−

−

−

−
−=Φ ∑ ∏

=
≠
=

µ
λλ
µλ

λλ
µλ

β
1

,
1

1
, 

and using (4.3) we get  

( ) ∑ ∏
=

≠
= −

−

−

−
−=Φ

m

j

H
j

m

kji
i ij

ij

kj

jj

j
Tk by

yb
bb

1
,

1

1
λλ
µλ

λλ
µλ

β , 

( )∑ ∏
=

≠
= −

−

−

−
−=

m

j

T
j

T
m

kji
i ij

ij

kj

jj

j
T yb

yb
bb

1
,

1

1
λλ
µλ

λλ
µλ

. 

Canceling the common term, we get 
 

( ) ∑ ∏
=

≠
= −

−

−

−
−=Φ

m

j

m

kji
i ij

ij

kj

jj
k bb

1
,

1 λλ
µλ

λλ
µλ

β , 

( )

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

−

−

−=Φ ∑
∏

∏

=

≠
=

≠
=m

j
m

ji
i

ij

m

ki
i

ij

k b
1

1

1

1
λλ

µλ

β . 
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In [5] it is proved that  

,,,2,1,1
1

1

1

mk
m

j
m

ji
i

ij

m

ki
i

ij

L==
−

−

∑
∏

∏

=

≠
=

≠
=

λλ

µλ

     (4.5) 

for any sets of { }  and { }  in which the m
ii 1=λ m

ii 1=µ iλ are distinct, and thus ( )βkΦ  vanishes, as required.  
This completes the proof of the theorem. 

From the expression (4.1) it is clear that sufficient conditions for the existence ofβ , and consequently 
for a solution to the partial eigenvalue assignment problem to exist: 
a, No mjj ,,2,1, L=λ  vanishes, 

b, The { } are distinct, m
ii 1=λ

c, The vector b must be not orthogonal to .,,2,1, mjy j L=  
 
The above discussion leads us to formulate the following algorithm for our solution of the partial 

eigenvalue assignment problem. 
 

Algorithm    The single–input partial eigenvalue assignment algorithm  
 
Inputs:  is an  real non-symmetric constant matrix, b  is an n-vector and A nn× ( )mdiagD µµµ ,,, 21 L= , 
closed under a complex conjugation. 
 
Assumption: The numbers nm λλµµ ,,;,, 11 LL  are all distinct and closed under a complex conjugation, 

where nλλλ ,,, 21 L  are the eigenvalues of the matrix . A
 
Output: The feedback vector  such that the spectrum of the matrix  is f )( TbfA−
{ }nmm λλµµ ,,;,, 11 LL + , where nm λλ ,,,1 L+  are the last mn −  eigenvalues of . A

 

Step 1. Obtain the first m  eigenvalues mλλλ ,,, 21 L  of the matrix  that need to be reassigned          

and the corresponding left eigenvectors . 

A

myyy ,,, 21 L

Step 2. Compute the explicit expression for β  where its components are given as: 

.,,2,1,1
1

mj
yb

m

ji
i ij

ij

j

jj

j
Tj L=

−

−−
= ∏

≠
= λλ

µλ
λ
µλ

β  

Step 3. Form 
AYf HT

1β= . 
 

5. Real Form of a Feedback Vector . f
 

In this section we prove that the feedback vector  must be real, if all { }f mλλλ ,,, 21 L                    

and { }mµµµ ,,, 21 L  are closed under a complex conjugation. 
 

Theorem 4 
Let { }mλλλ ,,, 21 L  and { }mµµµ ,,, 21 L  be two disjoint sets of complex numbers, closed under       

a complex conjugation and let { }mλλλ ,,, 21 L  are a part of the eigenvalues of the matrix  with A
nnRA ×∈ . We assume that the non–zero column vectors { }myyy L,, 21  be such that jk yy = . Then 
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jk ββ =  whenever kj λλ =  and kj µµ =  kjmj ≠= ,,,2,1 L  where jβ  is a component of β  as 
in (4.1). 
 
Proof 

We take 

.,,2,1,1
1

mj
yb

m

ji
i ij

ij

j

jj

j
Tj L=

−

−−
= ∏

≠
= λλ

µλ
λ
µλ

β     (5.1) 

then  

.,,2,1,1
1

mj
yb

m

ji
i ij

ij

j

jj

j
Tj L=

−

−−
= ∏

≠
= λλ

µλ
λ
µλ

β    (5.2) 

Since kj λλ = , kj µµ = and jk yy =  then 

,,,2,11
1

mk
yb k

m

ki
i ik

ik

k

kk

k
Tj L==

−
−−

= ∏
≠
=

β
λλ
µλ

λ
µλ

β    (5.3) 

and hence ..,,2,1, kjmkjkj ≠== Lββ   The theorem is then proved. 

Now, in the following theorem  we describe how to transform a complex conjugate set of β  and the set 

of left eigenvectors  to the real ones. This will be required to obtain the real feedback vector . HY1 f
 
Theorem 5 

Let { m}λλλ ,,, 21 L  be a set of complex numbers, closed under a complex conjugation, 

{ m}βββ ,,, 21 L  and let vectors {  be such that }myyy L,, 21 jk yy =  and jk ββ =  whenever 

kj λλ = , . kjmj ≠= ,,,2,1 L

Then 
I- There exists a nonsingular matrix  such that mmCT ×∈

HTT =−1 ,   ,  ,      (5.4) H
R Tββ = HH

R TYY 11 =
where  and { } m

m C ×∈= 1
21 ,,, ββββ L { } mn

m CyyyY ×∈= L,, 211  and both Rβ  and  are 
real matrices.  

H
RY1

II-There exists a real feedback vector  such that f
 

AYf H
RR

T
1β=         (5.5) 

Proof 
I- Define  

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

S
S

S
S

T

000
0

00
000
000

L

OMM

MOO

L

L

,      (5.6) 

where  

⎥
⎦

⎤
⎢
⎣

⎡
−

=
ii

S
11

2
1

 and ⎥
⎦

⎤
⎢
⎣

⎡ −
=

i
i

S H

1
1

2
1

. Then the matrix  satisfies: S

⎥
⎦

⎤
⎢
⎣

⎡
=

10
01

SS H . Thus the matrix T  is nonsingular where HTT =−1 . 
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Rewrite { m}ββββ ,,, 21 L=  in the other form { }mmjj ,11,,4,32,1 ,,,,, −+= βββββ LL  

where { }11, , ++ = jjjj βββ . Since jk ββ = , we assume that jj ββ =+1 and ibaj +=β , then 

{ }ibaibajj −+=+ ,1,β  
and 

{ } { }baSibaibaS HH
jj ,2,1, =−+=+β

{ } R
H

mm
H

jj
HHH SSSST ββββββ == −+ ,11,4,32,1 ,,,,, LL . 

Set  in the block form { myyyY L,, 211 = } { }mmjj yyyyY ,11,,4,32,11 ,,,,, −+= LL  where 

{ }11, , ++ = jjjj yyy . Since jk yy = , we assume that jj yy =+1  and jjj idcy += , where both 

[ ]T
njjjj cccc ,,,, 21 L= and [ ]T

njjjj dddd ,,,, 21 L= are columns then  

{ }jjjjjj idcidcy −+=+ ,1, . 

{ } { }jj
H

jjjj
H

jj dcSidcidcSy ,2,1, =−+=+  

{ } R
H

mm
H

jj
HHH YSySySySyTY 1,11,4,32,11 ,,,,, == −+ LL .  (5.7) 

By using the transpose conjugate of (5.7), we obtain  HH
R TYY 11 =

 
II- Now, we show that the feedback vector  must be real. In the section 3, we showed that               

the spectrum of the matrix 

f
( )TbfA −  is { }nmm λλµµµ ,,,,,, 121 LL +  such that . AYf HT

1β=
Since  

H
R Tββ =   and  , HH

R TYY 11 =
then 

AYATYTAYf H
RR

HHHT
111 βββ ===  

where both Rβ  and  are real matrices. Then, there is a real feedback vector  H
RY1

AYf H
RR

T
1β=  

such that the spectrum of the matrix ( )TbfA −  is { }nmm λλµµµ ,,,,,, 121 LL + . The theorem is proved. 
 
Remark: 

Clearly, if all { } are real, then is real as well. If, in addition, all { }  are real, then 

both

m
jj 1=

λ HY1
m
jj 1=

µ

β  and are also real. f
 

6. A numerical Example 
 

We choose a randomly generated matrix  (size 8) and a randomly vector b  as follows: A
 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

0.30930.64490.69790.42890.67210.74680.00990.4057
0.72710.82160.15090.70950.20260.01530.81320.1763
0.53410.89980.54170.50280.52520.19880.35290.7382
0.34120.49660.30280.83130.84620.27220.05790.9218
0.28970.59360.68220.37950.41866038.00.89360.7919
0.34200.85370.19340.68130.46600.19870.41030.6154
0.66020.86000.18970.01960.93180.20280.91690.4447
0.81800.37840.30460.83810.44510.13890.93550.8214

A

 
. 
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⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

0.0185
0.4565
0.7621
0.8913
0.4860
0.6068
0.2311
0.9501

b

 
 
 
 
 
 
 
 
 
 
The matrix  has eigenvalues shown in Tab. 1. A

 

Eigenvalues of  A
-0.2035 + 0.6192i 

-0.2035 - 0.6192i 

0.6823 + 0.0225i 

0.6823 - 0.0225i 

4.1633 

0.3323 

0.0862 

-0.6793 

 

Now, we assign the first  eigenvalues 2=m 21 ,λλ  to the conjugate pair i±−= 32,1µ . Using         
the explicit formula (4.1) gives 

[ ]6.1360i   40.0110-6.1360i - 40.0110- +=β , 
from which we compute the feedback vector , in view of (3.3) as: f

. 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

4.1311
12.7117-
2.4033
8.3749-

20.7621
12.5617

8.8118-
11.2870-

f

As expected, in the theorem 5,  must be real. f
 
 
 
 
 
 
 
 
 
The eigenvalues of the matrices  and  A ( )TbfA −       are shown in Tab. 2. 

 

Eigenvalues of  A Eigenvalues of ( )TbfA −  

-0.2035 + 0.6192i -3.0000 + 1.0000i 

-0.2035 - 0.6192i -3.0000 - 1.0000i 

0.6823 + 0.0225i 0.6823 + 0.0225i 

0.6823 - 0.0225i 0.6823 - 0.0225i 

4.1633 4.1633 

0.3323 0.3323 

0.0862 0.0862 

-0.6793 -0.6793 
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7. Conclusion 

 
In this paper, we derived an explicit solution to the partial eigenvalue problem by using one                   

of the orthogonality relations between the eigenvectors for the linear pencil 0=− xAx λ . We need only            
a partial knowledge of the spectrum (and the associated left eigenvectors) of the matrix . These 
eigenvalues and eigenvectors are required to be reassigned. We proved that the solution (feedback vector ) 
for this problem is in the real form. 

A
f
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