

Acta Montanistica Slovaca Ročník 11 (2006), číslo 2, 144-150

Web Services as new phenomenon in the PHP environment

Pavel Horovčák1

Abstract
The support of development and exploitation of Web Services (WS) is gradually becoming an integral part of current development

environments. Beside standard environments connected with the emergence of WS (Java or .NET), the support is presently time realized
also in a widely-used environment for the web application development – PHP, in its updated version 5. This contribution is oriented
towards the development and utilization of WS within the framework of PHP 5. It deals with the development of standard
WS (calculation mode) as well as WS in the database mode (using MySQL, SQLite). It compares the structured and object-oriented
approach (which is preferred) to the server part of the service development.

Key words: Web service, PHP, XML, WSDL, MySQL, SQLite.

Introduction

The Hypertext Processor (PHP) is a widely-used general-purpose scripting language that is especially
suited for the web development as it was designed to work on the web and can be embedded into HTML.
It is a procedural language, in the current version 5 with object-oriented capabilities, and has a syntax similar
to the C, Perl, and Java languages. PHP was first released on June 8, 1995 and was created by Rasmus
Lerdorf, initially as a simple set of Perl scripts for tracking accesses to his online resume. PHP 3 was the first
version that closely resembles PHP as we know it today. It was created by Andi Gutmans and Zeev Suraski
in 1997 and was officially released in June 1998. The PHP version 4, released in May 2000, was a major
milestone, with its explosive performance increase and many features, such as the native session support.
The PHP version 5 was released in July 2004 after a long development and several pre-releases. It is mainly
driven by its core, the Zend Engine 2.0, with a new object model and dozens of other new features, first
of all the advanced support of XML and web services (SOAP extension) (Gilmore 2005). Among other new
features there are exceptions handling in try-catch mode, advanced string processing and the support
of the SQLite open source database engine.

Several features of PHP’s are advantageous for the development of web services (WS). The first
one is its object-oriented programming capabilities, namely in the version 5. It also allows SOAP (Simple
Object Access Protocol) and XML-RPC (Remote Procedure Call) toolkits split into a group of classes, each
supporting parts of the entire WS transaction. Another advantage of PHP is its XML support. The Expat
parser is bundled with PHP, providing the SAX (Simple API for XML) capability out of the box. For
the expanded XML functionality, there are several PHP extensions, such as the domxml extension
(Document Object Model), the xslt (eXtensible Stylesheet Language Transformation) extension as well
as the experimental extension for XML-RPC and SOAP (Ayala et al. 2002).

PHP was, along with Perl, one of the frontrunners in the server-side programming a long time before
any JSP/Servlet or ASP (Active Server Page) technology came to be (Rubio 2004). It is often the language
of choice for those using the Apache's Web server, which runs almost 70% of sites on the Web. Due
to its pervasiveness, it seems obvious that it should support the most recent standards, such as SOAP, which
are also adopted by major technology vendors. In this article, we will describe how Web services can
be implemented in the PHP 5 environment.

Web services

The Web services are software applications identified by URI (Uniform Resource Identifier), whose

interfaces and interconnections can be defined, described, and searched for as XML artifacts. They support
a direct interaction with other software applications by means of mes¬sages written in the XML language
and transported by Internet protocols (Buranský 2003).

The Web services, a stack of emerging standards that describe the service-oriented and component-
based application architecture, are built on the service-oriented architecture (SOA) (Samtani 2002).

1 doc. Ing. Pavel Horovčák, CSc.,Department of Applied Informatics and Process Control,Technical University of Košice,,Košice,

Slovak Republic, Pavel.Horovcak@tuke.sk
 (Recenzovaná a revidovaná verzia dodaná 3. 6. 2006)

144

mailto:Pavel.Horovcak@tuke.sk

Acta Montanistica Slovaca Ročník 11 (2006), číslo 2, 144-150

A Web service is a software system identified by a URI, whose public interfaces and bindings
are defined and described using XML. Its definition can be discovered by other software systems. These
systems may then interact with the Web service in a manner prescribed by its definition, using XML based
messages conveyed by internet protocols (Champion et al. 2002).

The WSDL (Web Services Description Language) is an XML format for describing network services
as a set of endpoints operating on messages containing either a document-oriented or procedure-oriented
information (Christensen et al. 2001). The operations and messages are described abstractly and then bound
to a concrete network protocol and message format to define an endpoint. Related concrete endpoints
are combined into abstract endpoints (services). WSDL is extensible to allow a description of endpoints
and their messages regardless of what message formats or network protocols are used to communicate.
However, the only binding in this document describes how to use WSDL in conjunction with SOAP 1.1,
HTTP (HyperText Transfer Protocol) GET/POST, and MIME (Multipurpose Internet Mail Extensions).

PHP and web services

The PHP up to the version 4 does not have a standard SOAP or XML-RPC support. This is the reason

why there are several different implementations supporting the WS creation. First of all, it is NuSOAP,
a collection of PHP classes that allow users to send
and receive SOAP messages over HTTP. It is an open
source, licensed under the GNU LGPL, written
by Dietrich Ayala (Ayala 2005). It has been used
as the core of several WS toolkits for PHP, including
PEAR-SOAP and Active State software’s simple WS
API project. It is written in pure PHP and operates
under the PHP version 4. A very helpful extension
is the CURL extension, described as a Client URL
Library. The CURL allows to communicate
via different protocols such as HTTP, HTTPS, FTP,
telnet, and LDAP (Lightweight Directory Access
Protocol). Other implementation is WS initiative
named Simple WS API (SWSAPI), a standard method
for scripting languages to access Web services
described with the WSDL. To get started with
SWSAPI, see ASPN QuickStart (2005). The Komodo
(ASPN 2005) is a professional IDE for open source
languages, providing a powerful workspace for
editing, debugging and testing applications. It supports
Perl, PHP, Python, Tcl, XSLT, and numerous other
languages, and runs under Linux and Microsoft
Windows. Komodo features: the ability to
automatically generate Perl Web services clients from
WSDL files; Web services management including
the bookmark management and automatic creation of
Web services documentation; and AutoCompletion
and CallTips for Web services objects.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0
Strict//EN" "DTD/xhtml1-strict.dtd">
<html>
<head>
 <meta http-equiv="author" content="horovcak" />
 <meta http-equiv="Content-Type" content="text/html;
charset=Windows-1250" />
 <title>Temp client2</title>
</head>
<body>
<h3>Temperature client 2 (2 functions)</h3>
<?php
 $client = new SoapClient("teplota2.wsdl");
 $result = $client->getTemp(0);
 print("We generated temp ". $result. " deg C
");
 if (is_soap_fault($result)) {
 trigger_error("SOAP Fault: (faultcode: {$result-
>faultcode}, faultstring: {$result->faultstring})",
E_ERROR);
 }
 print $client->VolumSurf(3)."
";
 print $client->VolumSurf(1)."
";
?>
</body>
</html>

Fig. 1. Illustration of WS client code.

There are two other methods of consuming and
producing WS - XML-RPC (David 2004) and REST
(Trachtenberg 2003). The Remote Procedure Calls are
used to establish and facilitate transactions between
two remote systems. To enable PHP XML-RPC
functionality, you must download the XML-RPC
toolkit, which includes xmlrpc.inc (the base class
library) and xmlrpcs.inc (the server class library).
The REST (which stands for the "Representational
State Transfer"), is a simpler approach than XML-RPC
or SOAP, using standard HTTP methods such as GET,
POST and PUT to send and retrieve XML data. You
can then use tools like PHP DOM, SAX, or even XSL
to do the parsing.

<?php
class LocTemp {
 public function getTemp($symbol) {
 $temp = rand(0,40);
 return $temp;
 }
 public function VolumSurf($size){
 $surf=6*$size*$size;
 $volume=$size*$size*$size;
 return "Input=".$size." Surf=".$surf." Vol=".$volume;
 }
}
$server = new SoapServer("teplota.wsdl");
$server->setClass("LocTemp "); //object approach
//$server->addFunction("getTemp"); //functional
//$server->addFunction("VolumSurf");
$server->handle();
?>

Fig. 2. Illustration of WS server code.

 145

Pavel Horovčák: Web Services as new phenomenon in the PHP environment

Web services in PHP5

The Version PHP 5 reacts to the SOAP

implementation popularity at other producers by its
insertion between standard extensions. The SOAP
functionality is available by a dynamic extension in
the php.ini file (extension=php_soap.dll). In this
way, PHP 5 provides simple development
possibilities of the server as well as the client
WS parts. At the same time it provides a number
of functions needed for a correct WS functionality.
In the WS development process is desirable to set
soap.wsdl_cache_enabled=0 in the initialization
file php.ini in the [soap] section (; enables
or disables the WSDL caching feature). For the WS
routine operation purposes the standard setting
is soap.wsdl_cache_enabled=1. The fundamental
prerequisite of the client and server part
collaboration is a correctly configured WSDL file.
This file consists of four sections which specify
parameters and return values of particular server
functions (<message>), port type together with
particular functions names (<portType>,
<operation>), particular functions binding to
the port type (<binding>), and the service name
with the server part‘s service URL specification
(<service>). A repeatedly cited example of such
a file is Temperature Service (2001). We show
a few examples of typical tasks solution
in the PHP5 environment, which can be divided
into computational type tasks and database type
tasks. In the server side realization, the object
oriented approach is preferred, although
it is possible to work on the standard function
level. Using the object oriented approach,
all methods of a given class are included into
the server functionality by means of only one
method (SoapServer->setClass()). It exports
all methods from the specified class. Using
the functional approach, it is necessary for each
function to be included separately into the server
functionality by means of a corresponding method
(SoapServer->addFunction()). A list of all
accessible server functions on the client side
provides a very useful standard function
SoapClient->__getFunctions(), whose return value
is an array containing the names of these functions
together with the names and types of its
parameters.

WS of computational type

The server side of WS contains one or more

functions. These functions can have zero, one
or more input parameters of various types (e.g.
string, integer, float). The simplest way is to use
only one output parameter in each function, which
is mostly of the string type. Into this output string
we can easily include all needed output parameters

<?xml version ='1.0' encoding ='UTF-8' ?>
<definitions name='LocTemp'
 targetNamespace='urn:hp_php5_soap'
 xmlns:ph='urn:hp_php5_soap'
 xmlns:soap='http://schemas.xmlsoap.org/wsdl/soap/'
 xmlns:xsd='http://www.w3.org/2001/XMLSchema'
 xmlns:soapenc='http://schemas.xmlsoap.org/soap/encoding/'
 xmlns:wsdl='http://schemas.xmlsoap.org/wsdl/'
 xmlns='http://schemas.xmlsoap.org/wsdl/'>

<!-- Parameters and return values -->
<!-- Function getTemp -->
<message name='getTempRequest'>
 <part name='symbol' type='xsd:string'/>
</message>
<message name='getTempResponse'>
 <part name='Result' type='xsd:int'/>
</message>
<!-- Function VolumSurf -->
<message name='VolumSurfRequest'>
 <part name='size' type='xsd:int'/>
</message>
<message name='VolumSurfResponse'>
 <part name='Result' type='xsd:string'/>
</message>

<portType name='TempTypPortu'>
 <operation name='getTemp'>
 <input message='ph:getTempRequest'/>
 <output message='ph:getTempResponse'/>
 </operation>
 <operation name='VolumSurf'>
 <input message='ph:VolumSurfRequest'/>
 <output message='ph:VolumSurfResponse'/>
 </operation>
</portType>

<binding name='TempBinding' type='ph:TempTypPortu'>
 <soap:binding style='rpc'
 transport='http://schemas.xmlsoap.org/soap/http'/>
 <operation name='getTemp'>
 <soap:operation soapAction='urn:hp_php5_soap#getTemp'/>
 <input>
 <soap:body use='encoded' namespace='urn:hp_php5_soap'
 encodingStyle='http://schemas.xmlsoap.org/soap/encoding/'/>
 </input>
 <output>
 <soap:body use='encoded' namespace='urn:hp_php5_soap'
 encodingStyle='http://schemas.xmlsoap.org/soap/encoding/'/>
 </output>
 </operation>
 <operation name='VolumSurf'>
 <soap:operation soapAction='urn:hp_php5_soap#VolumSurf'/>
 <input>
 <soap:body use='encoded' namespace='urn:hp_php5_soap'
 encodingStyle='http://schemas.xmlsoap.org/soap/encoding/'/>
 </input>
 <output>
 <soap:body use='encoded' namespace='urn:hp_php5_soap'
 encodingStyle='http://schemas.xmlsoap.org/soap/encoding/'/>
 </output>
 </operation>
</binding>

<service name='LocTemp'>
 <port name='TempPort' binding='TempBinding'>
 <soap:address

location='http://localhost/php_ws/ph_f/server2.php'/>
 </port>

</service>
</definitions>

Fig. 3. View of wsdl file.

146

Acta Montanistica Slovaca Ročník 11 (2006), číslo 2, 144-150

 147

 function VolumSurf($size){
 $surf=6*$size;
 $vol=$size*$size;
 $vysledok["size"]=$size;
 $vysledok["surf"]=$surf;
 $vysledok["volume"]=$vol;
 return print_r($vysledok,true);
 }

 print_r($client->VolumSurf(3));

Array
(
 [size] => 3
 [surf] => 18
 [volume] => 9
)

Fig. 5. WS client output

Fig. 4. Working with array in WS

along with a suitable commentary. The PHP 5 allows the function return value in the form of an array
(with string indexes), which must be processed both on the server side as well as on the client side by means
of the standard function print_r(). The above-mentioned function enables an array dump (to the viewing
screen or to the string). An example of WS server with two functions is presented on Fig. 1. An example
of implementation of the WS client side is presented in Fig. 2. An illustration of wsdl files ensuring
the binding between the server and the client side, is for our demonstration in Fig. 3. The result of the WS
client side is illustrated in Fig. 4. The principle and a demonstration of how to work with arrays on the WS
server side as well as on its client side, together with an example of the corresponding client’s side output,
is illustrated in Fig. 5. On both WS sides the function print_r is used simultaneously.

WS of database type with a selection function

Our demo WS operates over the table

of acronyms with two columns, containing
an acronym and its meaning. All access
parameters to the database are gathered in an
auxiliary file, which is a part of each server’s
function of service. The input of the WS
is the acronym shape, and its output is the string
containing a given acronym and its meaning.
If the given acronym is not defined in the table,
the output contains the string “??? not defined”.
The basic WS function can be extended by
other (informative) functions, such as for
example the total number of acronyms defined
in the table (output is the string indicative
of this number) or a function returning the list
of all acronyms defined in the table. The WS
of database type with the selection function
usually have one (or no) input parameter.
In the case of more complicated structures,
relations between tables or selection conditions,
the WS can also have more input parameters.

WS of database type with a record function

WS enables a new record addition, record

modification, and a deletion of table records.
The number of input parameters for the above-
mentioned functions depends on the client
authentication method (access rights) and
the data model structure (and primary keys
form) over which the WS operates. Illustrative
WSs are developed using the already mentioned

Fig. 6. Output of complex database WS.

Pavel Horovčák: Web Services as new phenomenon in the PHP environment

acronym table. A demonstration of the complex WS output is presented in Fig. 6. The service contains a list
of all server functions, the number of acronyms in the database table, the meaning of given a acronym, list
of all acronyms as well as the operation of acronym addition, modification, and the deletion.

WS and SQLite

The PHP5 is coming with a

new database engine SQLite, which
is a major contribution. SQLite
is in accordance with SQL92. It
saves the database into one file only,
supports transactions, is free
for Windows as well as for Unix.
In PHP5.0, SQLite is just a part
of the environment. From PHP 5.1
upward it is necessary to ensure its
operation by means of a dynamic
extension in the php.ini file
(extension=php_sqlite.dll),
but the extension=php_pdo.dll must also
be included. The development of WS using
SQLite is very much like that using MySQL.
Among the differences is e.g. a different way
of database open (it replaces two MySQL
functions: connect and select_db) and it does
not use the free_result operation. In most
standard operations it suffices to replace
the mysql prefix with sqlite prefix
in the function name. The support of SQLite
in PHP has been developed for a considerably
shorter time (and apparently is not yet
completed) than that of MySQL, but
nevertheless SQLite brings several new and
effective possibilities (e.g. output formats)
and functions. The database can also
be placed in the memory (quickness),
it supports operations with binary data as well
as user defined functions (UDF) creation and
even the creation of aggregating UDF for
the use in SQL statements. SQLite represents
a fast and efficient backend with minimal
maintenance costs. Its important advantage
is the possibility of transferring (in the form
of a file) of the entire database between
various computers. Therefore, the SQLite
seems to be an appropriate candidate
primarily in the database WS development
stage with a possibility of subsequent trouble-
free transfer to e.g. MySQL. All the above-
mentioned examples of database WS operate
also in the SQLite environment.

Fig. 7. The output of companies evidence – records.

WS application in the mining companies

evidence

The data model of WS. To illustrate
functions related to the evidence of mining
companies, it is built-up the simplest data
model represented by one table with three
attributes id, the region and the name

Fig. 8. The output of companies evidence – selections.

148

Acta Montanistica Slovaca Ročník 11 (2006), číslo 2, 144-150

<?php
 $ServiceFirms = new SoapClient ("Firmy5e.wsdl");
 print $ServiceFirms->Insert(1,"New Mining Company")."
\n";
 $result = $ServiceFirms->Update(6," Rudne bane v likv. Company")."
\n";
 if (is_soap_fault($result)) {
 trigger_error("SOAP Fault: (faultcode: {$result->faultcode}, faultstring:
{$result->faulstring})", E_ERROR);
 }
 print $result;
 print $ServiceFirms->Delete(0)."
\n";

?>

of a company. The id attribute
represents an integer firm identification
and it is a primary key of the table (auto
increment). The attribute region
is an integer too, whereby 1 means
the East Slovak Region, 2 is the Central
Slovak Region and 3 is for the West
Slovak Region. The attribute value 0
stands for all the regions.

Fig. 9. The part of WS client’s code corresponding to output in fig. 7.

The functions of WS.
The functions of mining companies
evidence can be divided into two
groups – the group of records
and the group of selections. The group
of records contain three functions – the function of the company addition, the function of the company
modification and the function of the company deletion. Into the group of selection, a function of the total
number of companies’ x was assigned, a function of the number of companies’ number in a specific region,
a function of specification of a given company, a function of returning the list of all companies, a function
returning the list of companies in given region, and a function providing a list of all functions of the created
WS. The real operating version of each function has to be solved, handling all exceptions (by the appropriate
error string). An example is the selection of a non - existing company specification or an attempt to delete
the non existing company.

The application of WS. The application consists of three parts. The base part is the server part of service,
which contains all the above mentioned functions, the communication to the database table, the input data
check, the exceptions handling and the link to the wsdl file. All this forms conditions and requirements to its
robustness and stability. The binding part is represented by the corresponding wsdl file which contains URL
of the server part. The client side of service contains a link to the wsdl file and calling of one or more
(eventually all) functions provided by the server side of service.

The illustration of WS. The Database table is at the beginning filled by six companies, four in the East
Slovak Region and two in the Central Slovak Region. After the addition of a new company
and the modification of other company (Fig. 7) the state of the evidence is illustrated in Fig. 8. For
a demonstration of an exception handling (attempt to delete a non existing company) see Fig. 7.
A corresponding segment of the source code of WS client’s side is illustrated in fig. 9. If the function
of the company specification gets an id of a non existing company, the result will be a error string in the form
“??? Not defined”.

The utilization of WS. The advantage of WS technology is a fact that the service’s client side can
be designed in other environment as the server part of service. In this way, whoever interesting in the given
web service can create an access to the service in his/her conditions. By the complement and extension
of the service data model, it is possible to create a companies‘ evidence in the needed structure.
The utilization of WS in the “internal” form as a part of various applications or systems is a today’s standard,
the utilization of them in the “external” form becomes a part of the enterprises’ information infrastructure.
The current development environments by now support the possibility of WS building so that it is necessary
to use them.

Conclusion

The PHP in the version 5 brings a highly-developed SOAP support, which enables a simple

and effective development and exploitation of WS, too. SOAP is a lightweight protocol for the exchange
of structured information in a decentralized, distributed environment, based on XML. It provides a message
construction in a manner that it is possible to transfer them via various base protocols. In this way, PHP 5
joins development environments allowing the creation of the server side of a WS as well as its client side.
It supports the creation of standard WSs but first of all the creation of the database type WSs. The access
to the database is solved and handled on the WS server side. And since PHP is an environment with a very
effective solution of the database communication, the utilization of PHP for the development of database
type WS is very prospective (Jakab et al., 2002). A certain deficiency of the environment is the manual
creation of the WSDL file, for which it would be better to use an XML editor. The list of provided functions
(10 for the client side, 12 others) supports all standard situations encountered when working with WSs.

 149

Pavel Horovčák: Web Services as new phenomenon in the PHP environment

Acknowledgement: The contribution was created
within the framework of projects KEGA 3/3084/05,
KEGA 1/3126/05 (B), KEGA 1/3124/05 (L),
VEGA 1/2160 /05 (K)
and ICOTEL (LdV) SK/02/B/F/PP/-142261.

References

ASPN. Php Ws Quickstart. [Online] [Cited 5.12.2005] Available from
 Http://Aspn.Activestate.Com/Aspn/Webservices/Swsapi/Phptut.
ASPN: Php. 2005 [Online] [Cited 5.12.2005] Available From
 Http://Aspn.Activestate.Com/Aspn/Php/Webservices/.
Ayala, D., Browne, Ch.,Chopra, V., Sarang, P., Apshankar, K., Mcallister, T: Professional Open Source Web

Services. Wrox Press Inc 2002 Isbn: 1861007469, Pp. 523.
Ayala, Dietrich: Nusoap - Web Services Toolkit For Php V 1.94. [Online] 2005/08/04 [Cited 5.12.2005]

Available from <Http://Cvs.Sourceforge.Net/Viewcvs.Py/*Checkout*/Nusoap/Lib/Nusoap.Php>
Buranský, I.: XML a webové služby. Prienik do XML cez Microsoft.Net a Murphyho zákony. Microsoft

Praha 2003, 132 Str.
Champion, M., Ferris, Ch., Newco-Mer, E., Orchard, D.: Web Services Architecture. W3c Working Draft 14,

[Online] November 2002 [Cited 5.12.2005] Available from
 <Http://Www.W3.Org/Tr/2002/Wd-Ws-Arch-20021114/>
Christensen, E., Curbera, F., Mere-Dith, G., Weerawarana, S.: Web Services Description Language 1.1,

[Online] March 2001, [Cited 5.12.2005] Available from <Http://Www.W3.Org/Tr/Wsdl>
David, Jean-Luc: Creating And Consuming Web Services With Php. Webservices.Xml.Com [Online]

2004/03/24 [Cited 5.12.2005] Available from
 <Http://Webservices.Xml.Com/Pub/A/Ws/2004/03/24/Phpws.Html>
Gilmore, J., G.: Velká Kniha Php5 A Mysql. Zonerpress Brno 2005, Isbn 80-86815-20-X, 711 Str.
Rubio, Daniel: Building Php Web Services With Pear [Online] 2004/02/16 [Cited 5.12.2005] Available from

<Http://Webservices.Devchannel.Org/Webserviceschannel/04/02/11/1432220.Shtml?Tid=47&Tid=51&
Tid=54>

Samtani, G.: Top Five Web Service Myths. Builder – Architect - Wservices [Online] Aug. 2002 [Cited
5.12.2005] Available from

<Http://Builder.Com.Com/Article.Jhtml;Jsessionid=4vpor43osae21tqqacqsffa?Id=U00320020820gxs01.Htm
&Page=2>

Jakab, F., Samuelis, L.: Internet based education of IT and computer networks in coleges of eastern Slovakia.
In: Virtual University: Proceedings of the 3rd international conference, Bratislava, Slovak Republic,
March 17th-19th, 2002. Bratislava : STU, 2002. pp. 60-63. ISBN 80-227-1811-4.

Temperatureservice. Wsdl [Online] 2001 [Cited 5.12.2005] Available from
 <Http://Www.Methods.Net/Sd/2001/Temperatureservice.Wsdl>.
Trachtenberg, Adam: Php Web Services Without Soap [Online] 2003/10/30 [Cited 5.12.2005] Available

from <Http://Www.Onlamp.Com/Pub/A/Php/2003/10/30/Amazon_Rest.Html>.

150

http://aspn.activestate.com/Aspn/Webservices/Swsapi/Phptut
http://aspn.activestate.com/Aspn/Php/Webservices/

	Web Services as new phenomenon in the PHP environment
	Pavel Horovčák
	Abstract
	Introduction
	Web services
	PHP and web services
	Web services in PHP5
	WS of computational type
	WS of database type with a selection function
	WS of database type with a record function
	WS and SQLite
	WS application in the mining companies evidence
	Conclusion

	References

