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Method for simulation of the fractional order chaotic systems 
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Abstract 
This paper deals with the method of simulation of fractional order chaotic systems. We present a brief survey of the existing 

fractional order chaotic systems. These systems are described by three fractional differential equations where order of derivatives                     
is a non-integer, arbitrary order. The total order of chaotic system is less than three. We present an approach where we demonstrate               
by an illustrative example the method for deriving the model of such a kind of fractional order chaotic system and method                               
for its simulation. This example is well known chaotic system, the so called Chua’s oscillator. We have demonstrated the real 
measurements and the simulation in the Matlab/Simulink as well. 
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Introduction 
 

A number of applications where fractional calculus has been used rapidly grows. These mathematical 
phenomena allow to describe a real object more accurate than the classical integer methods. The real objects 
are generally fractional (Oustaloup, 1995; Podlubny, 1999; Westerlund, 2002) however, for many of them 
the fractionality is very low. A typical example of a non-integer (fractional) order system is the voltage-
current relation of a semi-infinite lossy transmission line (Wang, 1987) or diffusion of heat into a semi-
infinite solid, where the heat flow is equal to the half-derivative of temperature according to time (Podlubny, 
1999).  

The main reason for using the integer-order models was the absence of solution methods for fractional 
differential equations. We have to identify and describe the real object by the fractional order models.                
The first advantage is that we have more degrees of freedom in the model. The second advantage is that               
we have a "memory" in the model. Fractional-order systems have an unlimited memory, being integer-order 
systems cases in which the memory is limited. 

It is well-known that a chaos cannot occur in continuous systems of total order less than three.                 
This assertion is based on the usual concepts of order, such as the number of states in a system or the total 
number of separate differentiations or integrations in the system. The model of system can be rearranged               
to three single differential equations, where the equations contain the non-integer (fractional) order 
derivative. The total order of system is changed from 3 to the sum of each particular order. To put this fact 
into context, we can consider the fractional-order dynamical model of the system. Hartley et al. consider                
the fractional-order Chua’s system; in the work by Arena et al., 1998, (the fractional order cellular neural 
network was considered, in the work by Gao et al., 2005 the fractional Duffing’s systems was presented. 
Other fractional order chaotic systems were described in the many others works (e.g. Chunguang et al. 2004, 
Deng et al. 2005, Lu 2005, Nimmo et al., 1999, etc.). In all these cases the chaos was exhibited in a system 
with the total order less than three.  

 
Fractional calculus 

 
The idea of fractional calculus has been known since the development of the regular calculus, with               

the first reference probably being associated with Leibniz and L’Hospital in 1695.  
The fractional calculus is a generalization of integration and differentiation to non-integer order 

fundamental operator (1), where a and t are the limits of the operation. The continuous differential operator   
is defined as  
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The two definitions used for the general fractional differintegral are the Grünwald-Letnikov (GL) 
definition and the Riemann-Liouville (RL) definition (Oldham 1974, Podlubny 1999). The GL is given here: 
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where [.] means the integer part. The RL definition is given as  
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for   (n - 1 < r < n) and where Γ(.) is the Gamma function. 
 

Fractional-order chaotic system 
 

For an illustration we have chosen the classical 
Chua’s oscillator which can be realized by electrical 
elements according to the scheme shown in Fig. 1, 
which is a simple electronic circuit (Kennedy, 1992) 
that exhibits a nonlinear dynamical phenomenon 
such as the bifurcation and chaos.  
 
 
 
 
Fig. 1.  Circuit of Chua’s oscillator. 

 
This circuit behavior can be described by three differential equations. Westerlund et al. in 1994 

proposed a new linear capacitor model. It is based on Curie’s empirical law of 1889 which states that                  
the current through a capacitor is  
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where h1 and m are constant, U0 is the dc voltage applied at t = 0, and 0 < m < 1.  
For a general input voltage u(t) the current is  
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where C is capacitance of the capacitor. It is related to the kind of dielectrics. Another constant m (order)                
is related to the losses of the capacitor. Westerlund provided in his work the table of various capacitor 
dielectric with an appropriate constant m obtained by measurements.  

Westerlund in his work (Westerlund, 2002) also described the behavior of a real inductor. For a general 
current in the inductor, the voltage is 
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where L is inductance of the inductor and the constant m is related to the “proximity effect”. 
Applying the Kirchhoff laws and relation (5) and (6) into the circuit depicted in Fig. 1, we get                     

the following mathematical model of Chua’s system (Petráš, 2006): 
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where v1 is voltage on the capacitor C1, v2 is voltage on the capacitor C2, i is current in the inductor L1,               
G = 1/R2, q1 is the real order of the capacitor C1, q2 is the real order of the capacitor C2, q3 is the real order           
of the inductor L1, and f (v1) is the piecewise linear v - i characteristic of the nonlinear Chua’s diode, which 
can be described as 
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with E being the breakpoint voltage of a diode, and Ga<0 and Gb<0 being some appropriate constants                
(the slope of the piecewise linear resistance). Chua’s diode (8) – negative impedance converter was realized 
by operating the amplifier LM 358 and the resistors R1, R7 and R8 (R7 = R8). 

 
Illustrative example 

 
Experimental measurements 

For an experimental verification of Chua’s system depicted in Fig. 1 and described by equations (7) and 
(8) were chosen the following values of electrical elements: 

 
1 2 1 1 2 7 84.71 ,   48 ,   4.64 ,   =897 ,  998 ,  390C nF C nF L mH R R k R R= = = Ω = Ω = =     (9) 

 
We used a ceramic capacitors C1 and C2 with the real order q1 = q2 = 0.98 and we assume the real order 

of inductor q3 = 0.94 (Westerlund, 2002). Total order of the system is q = 2.90. 
Assuming the three-segment piecewise-linear voltage transfer characteristic of negative impedance 

converter (8), we have the slopes 
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The breakpoint of the non-linear characteristic (8) is E ≈ 9 [V] (experimentally found). The resistors R3, 
R4, R5, R6, and the diodes D1 and D2 generate the positive and negative half of the non-linearity.   

In Fig. 2 is depicted a photo of the oscilloscope screen. It is a real measurement of voltages v1 - v2                 
of the circuit presented in Fig. 1, for  the electrical components (9) and parameters (10), projected onto the v1 
- v2  plane.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 2.  Strange attractor of Chua’s system (7). 

 
The result shown in Fig. 2 is the double-scroll attractor of fractional order Chua’s system described               

by the equations (7) and (8). The measurements were done by the digital oscilloscope Tektronix TDS1002, 
60 Mhz. 

 
Simulation in Matlab/Simulink 

For a simulation in the Matlab/Simulink environment we will use a dimensionless form of the fractional 
order Chua’s system which can be described by the following three differential equations (x ≡ v1/E,  y ≡ v2/E, 
z ≡ i/EG, A ≡  C2/C1, Β  ≡ C2/(L1G2), m0 ≡ Ga/G, m1 ≡ Gb/G): 
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where the nonlinear function f(x) is described as 
 

1 0 1( ) ( ) 0.5( ) (| ( ) 1| | ( ) 1|)f x m x t m m x t x t= + − × + − −    (12) 
 
We have used the Matlab/Simulink approach. The block diagram of the simulation is depicted in Fig. 3. 

For the simulation of the fractional derivative (integral) we used a Simulink block nid created by Duarte 
Valerio with the combination of the classical integrator using the property of commutation by two operators.               
In the mentioned block for the fractional order operator, we used a continuous fraction expansion method                 
of the generating function. The order of such an approximation in the form of a rational function was n = 10 
(Vinagre et al., 2003). 

 
Fig. 3.  Block diagram of Chua’s system in the Matlab/Simulink. 

 
In Fig. 4 is depicted the simulation result obtained by the numerical simulation in the Matlab/Simulink 

for the following values of parameters: A = 10.19, B = 10.30, q1 = q2 = 0.98 and q3= 0.94, for the initial 
conditions: (x, y, z) = [0.6, 0.1, -0.6] and for the slopes of Chua’s diode (12) characteristics: m0 = -1.11 and 
m1 = -0.86. 

 
Fig. 4.  Simulation result (x vs. y) of Chua’s system (11). 

 
Conclusion 

 
We have considered an example of chaotic fractional-order Chua’s circuit, which exhibits a chaotic 

behavior with the total order less than three. As has been demonstrated, the idea of fractional calculus 
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requires one to reconsider dynamic system concepts that are often taken for granted. So, changing the order 
of a system from integer to real, we also move from a three-dimensional system to the infinite dimension.  

The conclusion of this work confirms the conclusions of the works (Hartley et al., 1995; Lu, 2005; 
Podlubny, 1999; Westerlund; 2002), that there is a need to refine the notion of the order of a system which 
can not be considered only by the total number of differentiation. For fractional-order differential equations 
the number of terms is more important than the order of differentiation.  

The fractional-order model for chaotic Chua’s system was directly derived because electrical elements 
used in the circuit are not ideal. As was mentioned in the work by Westerlund (2002), the real electrical 
elements (e.g. capacitors, inductors, etc.) have a fractional order and should be described by fractional-order 
models.  

As has been demonstrated, the idea of fractional calculus requires to reconsider the dynamical system 
concepts. Some of them have been noted in this article and also in the work by Petráš at al. (2006). We also 
presented an approach to a simulation of the fractional order chaotic system in the Matlab/Simulink 
environment. The results obtained from the simulation are comparable with the results from a real 
measurement. 
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