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Navrh PIλDµ regulatorov necelociselnho radu zalozeny na optimalizacii s vyuzitim samorganizujucich migracnych algoritmov 
Design of fractional-order controllers based on optimization methods is one of the intensively developed trends of the present 

time. There are several quality control criterions to evaluate the controller performance and to design the controller parameters                      
by optimization. All of these objective functions are almost always multimodal in this case - so they have too complex geometric surface 
with many local extrema. In this context the choice of the optimization method is very important. In this paper we present a synthesis 
method for the design of fractional-order PIλDµ controllers based on an intelligent optimization method with so called self-organizing 
migrating algorithm utilizing the principles of artificial intelligence. Along with the mathematical description we will present also 
simulation results on illustrative examples to demonstrate the advantages of this method and advantages of the fractional-order PIλDµ 
controllers in comparison with traditional PID controllers. 
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Introduction 
 

Besides theoretical research of the fractional-order (FO) derivatives and integrals (Oldham, Spanier, 
1974; Samko, 1987; Podlubný, 1999 and many others) we can see in last years a growing number                           
of applications of the fractional calculus in very different areas. Considerable development has been achieved 
in control theory (Manabe,1961; Outstalup e.g., 1995; Axtel, Bise, 1990; Kolojanov, Dimitrova, 1992; 
Dorčák e.g., 1994; 2006; Podlubný, Dorčák, Koštial, 1997; Chen, 2002, etc.). In the above-mentioned works 
the first ever generalizations of analysis methods for FO control systems were made (s-plane, frequency 
response, etc). The main conclusions of this research were that, firstly, it is inadequate to use the integer-
order model for the design of the controller parameters for FO controlled object (Dorčák, 1994),                   
secondly - the control system controlled with FO controller is more robust to gain changes than the classical 
one, thirdly - the possibility to fulfill more design specifications by controller design.  

At design time is a very frequently used PID controller. Some design methods for the FO PIλDµ 
controllers are based on an extension of the classical PID control theory. Design of fractional-order 
controllers based on optimization methods is one of the intensively developed trends of the present time. A 
great contribution to this area have been the works (Chen, 2003; Nonje, 2005; Bettou, 2006; Cao, 2006; etc.), 
oriented toward the optimization-based design (Zelinka, 2002; Laciak, Kostúr, 2000; etc.). There are several 
quality control criterions to evaluate the controller performance and to design the controller parameters                
by optimization. All objective functions have too complex geometric surface with many local extrema. In this 
context the choice of the optimization method is very important. The methods based on classical 
deterministic linear or nonlinear function minimization often failed (Dorčák, 2006/a, 2006/b). 

 
Method for the fractional-order PIλDµ controller design 

 
In this paper we present a synthesis method for the design of the FO PIλDµ controllers based                           

on an intelligent optimization method with so called self-organizing migrating algorithm (Zelinka, 2002) 
utilizing the principles of artificial intelligence. 
 
Definition of the system 

For the later purposes we consider a simple unity feedback control system with the following transfer 
functions of the controlled system and controller: 
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where α, β are orders of derivatives (in general real numbers, α > β), ai, k1 are the values                             
of the coefficients of the controlled system, λ and µ are orders of derivation and integration (in general real 
numbers too), and KP, TI, TD are the values of the coefficients of the controller. 

It can be seen that the fractional-order PIλDµ controller has two parameters more than the conventional 
PID controller, therefore two more specifications can be met to improve the performance of the control 
system.  
 
Quality control criterions 

There are several quality control criterions to evaluate the controller performance and to design                        
the controller parameters by optimization, which fulfill desired design specifications. We have used                           
the following design specifications: no steady-state error, phase margin (Φm) and gain crossover frequency 
(ωcg) specifications, gain margin (gm) and phase crossover frequency (ωcp) specifications, robustness                        
in variations in the gain of the plant, robustness in high frequency noise, good output noise suppression, 
integral square error, overshoot, etc.  

The requirement for the no steady-state error can be fulfilled by properly implementing the fractional 
order integrator in the controller, which provides the steady-state error cancellation. The other requirements 
constitute the main optimized function and the optimization constrains. 
 
The minimized function 

As mentioned before, there are several quality control criterions (J1, J2, etc.) to evaluate the controller 
performance and to design the controller parameters by optimization. The test function, or the minimized 
function for the tuning of the parameters of fractional-order PIλDµ controllers in a classical unity feedback 
control system is often chosen as the integral square error (ISE) with or without restrictions: 
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where y(t) is measured or calculated output of the controlled system, yd(t) is desired value of the output,                 
e(t) is error, u(t) is the plant’s input and w1, w2 are weighting coefficients. Such criterions can be used only               
in special cases, but for designing all five parameters it is not convenient, because it often leads                               
to oscillations and the roots of the characteristic equation lie dangerously close to the border of stability.                     
In such cases we ought to use a more complex criterion including e.g. the above-mentioned gain crossover 
frequency, gain margin, and phase margin (Chen, 2003; Monje, 2004; Dorčák, 2006/a; 2006/b; etc.), control 
time, overshoot, etc. To fulfill properly specification on gain crossover frequency (ωcg), the following 
condition must be fulfilled: 
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where Fo(iω) is the open-loop transfer function of the control system in frequency domain with the Bode 
diagram depicted in Fig. 1a. We consider the absolute value of the frequency transfer function  |Fo(iω)|  as the 
main function for minimization (Fig. 1b). 

The transfer function of the open-loop system with the controlled system (1) and with the controller (2) 
has the form: 
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Then the frequency open-loop transfer function has the following form: 
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Fig. 1.  Bode diagram of the open-loop transfer function (a), Bode diagram – absolute value of the amplitude (b). 

 

Fig. 2.  Phase margin (Φm) and gain margin (gm). 
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The constraints of the minimization 

As the minimization constraints for the controller design we can consider e.g. the following four 
specifications: 
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The meaning of the phase margin (Φm) at ωcg=ω2 and gain margin gm [Monje 2004] can be seen                        

in Fig. 2. With the condition “Robustness to variations in the gain of the plant” (see [Chen 2003]) the phase 
is forced to be flat at ωcg and so, to be almost constant within an interval around ωcg. It means that the system 
is more robust to gain changes and the overshoot of the response is almost constant within the interval.                     
The “Robustness to high and low frequency noise” are illustrated in Fig. 3a (∀ ω ≥ ωt → T(iω) < At)                     
and Fig. 3b (∀ ω ≤ ωs → S(iω) < Bs). 
 

 
Fig. 3.  Bode diagram of  T(iω) and S(iω). 

 
 
 
The optimization method 

All considered objective functions have too complex geometric surface with many local extrema. In this 
context the choice of the optimization method is very important.  

In our earlier works (Dorčák, 2006/a; 2006/b) we have used for tuning of the FO PIλDµ controller                   
the function FMINCON from the optimization toolbox Matlab, to find the constrained minimum                            
of a function of several variables. This method, based on classical deterministic linear or nonlinear function 
minimization, is successful only with simpler types of the controlled systems, e.g. first-order system.                      
For higher-order systems, this optimization method often failed. 
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So in this paper we present a synthesis method for the design of the fractional-order PIλDµ controllers 
based on an intelligent optimization method with so called self-organizing migrating algorithm (Zelinka, 
2002) utilizing the principles of artificial intelligence. This method was compared in successful cases with 
the function FMINCON from the optimization toolbox Matlab. 

 
Illustrative examples 

 
In the first example we consider the controlled system with the coefficients values k1=1, a0=1, 

a1=0.2313, a2=0.7414, α=2, β=1 (integer-order plant) and integer-order PD controller with the following 
coefficients: KP=20.5, TD=3.7343. The step response of the closed-loop controlled system is depicted                      
in Fig. 4 (dashed line) with 25 % overshoot. 

To illustrate the use of so called self-organizing migrating algorithm (SOMA) (Zelinka, 2002)                        
as the simplest one-dimensional optimization method for controller parameters design we solved the task                 
to decrease the value of the overshoot of the mentioned closed-loop controlled system to 15 % by taking into 
account the controller as the fractional-order PDµ with the same values KP, TD and changing only the value µ 
(Bettou, 2006). Minimizing the appropriate test function (2), specialized to the overshoot, we obtained                
the optimal value µ=1.162 and from the step response depicted in Fig. 4 (solid line) we can see the decrease 
of the overshoot to the desired value of 15 %. Simultaneously we have a 16.5 % decrease of the ISE. 
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Fig. 4.  Comparison of the overshoots of the step responses.  

 
In the second example we consider the controlled system with the coefficient values k1=0.55, a0=1, 

a1=62, a2=0.0, α=0, β=1 and specification values ωcg=1, ωt=10, ωs=0.01, Φm=80, A=-20dB, B=-20 dB. With 
optimization method we obtained the following PIλDµ controller: KP=22.323, TI=84.79, TD=7.06, λ=0.176, 
µ=0.168 (Papajová, 2007). From the step responses depicted in Fig. 5 and from the Table 1 we can see                
the robustness of the control system by different values of k1. For such controlled system both optimization 
methods give satisfactory results, but  SOMA is still more safe. 

 
     Tab. 1.  Comparison of the overshoots and control rate (Timemax). 

 k1 = 0,3 k1 = 0.55  k1 = 0.9  

SOMA – overshoot        [%] 1.74                     2.4                     2.6 

SOMA - Timemax            [sec]    6.95 4.25 2.82 

FMINCON - overshoot [%] 1.68 2.38 2.59 

FMINCON - Timemax    [sec] 6.95 4.25 2.82 
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Fig. 5.  Robustness to gain k1 changes.  

 

 
Fig. 6.  Phase margin Φm=80 [deg] at s ωcg=1 [rad/sec]. 

 
From the bode plots of the open-loop control system depicted in Fig. 6 we can see that the requirements 

for the phase margin specification (Φm=80 deg) at the gain crossover frequency (ωcg=1 rad/sec) and also              
the robustness to high and low frequency noise (Fig. 7) are satisfied, which means that                                  
∀ ω ≥ ωt → T(iω) < At  and ∀ ω ≤ ωs → S(iω) < Bs. 
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Fig. 7.  Robustness to high and low frequency noise. 
 
In the third example we consider the controlled system with the coefficients values k1=1, a0=0.4, a1=1, 

a2=8, α=2, β=1. Using the dominant roots method with the stability measure St = 2, damping measure Tl = 0.4 
and with the value s3 = -10 of the third root we obtained the following parameter values of the integer order 
controller: KP=551.6, TI=2320, TD=111. With optimization method and with the following specifications 
values ωcg=10, ωt=100, ωs=0.01, Φm=68, A=-20dB, B=-20 dB we obtained PIλDµ controller parameters: 
KP=6.218, TI=44.357, TD=203.2, λ=0.664, µ=0.75. For such controlled system we must specially modify               
the optimization function and restrictions (additional frequencies for Φm) for the SOMA optimization 
method (Papajová, 2007).  

 

 
Fig. 8.  Phase margin Φm=68 [deg] at s ωcg=10 [rad/sec]  Fig. 9.  Step responses of the FO and IO systems. 
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From the bode plots of the open loop control system depicted in Fig.8 we can see that the requirements 
for the phase margin specification (Φm=68 deg, Fig. 8b) at the gain crossover frequency (ωcg=10 rad/sec, 
Fig. 8a) are satisfied. In Fig. 9 are compared step responses of the control system with fractional-order 
controller (Fig. 9b) and integer-order controller (Fig. 9a) for different values of k1. From the step responses 
depicted in Fig. 9 and from the Table 2 we can see the robustness of the control system with fractional-order 
PIλDµ controller opposite to the integer-order PID controller by different values of k1. 
 

Tab. 2.  Comparison of the overshoots and control rate (Timemax) for the PID and PIλDµ controllers. 

 PID PIλDµ

k1 Overshoot [%] Timemax [sec] Overshoot [%] Timemax [sec] 

0.5 44.61                  0.4 9.39 0.455 

1 26.11 0.27 8.95 0.26 

1.5 18.58 0.22 8.55 0.19 

 
 
In the fourth example we consider the controlled system with the coefficients values k1=1, a0=1.0, 

a1=0.5, a2=0.8, α=2.2, β=0.9 (fractional-order plant). With optimization method and with the following 
specifications values ωcg=1, ωt=100, ωs=0.1, Φm=80, A=-20dB, B=-20 dB (and additional frequencies                   
for Φm, ω1=1.1, ω2=1.5, ω3=10) we obtained PIλDµ controller parameters: KP=5.0442, TI=14.6784, 
TD=10.095, λ=1.046, µ=1.0964. For such controlled system we must specially modify the optimization 
function and restrictions for the SOMA optimization method (Papajová, 2007). 

 

 
Fig. 10.  Robustness to gain k1 changes. 

 
In Fig. 10 are depicted step responses of the control system with FO plant and FO controller                           

for different values of k1. From the step responses depicted in Fig. 10 we can see also the robustness                           
of the control system with fractional-order PIλDµ controller by different values of k1 of the controlled plant. 

 
Conclusions 

 
The obtained results by using the SOMA algorithm - based on an intelligent optimization with so called 

self-organizing migrating algorithm (Zelinka, 2002) utilizing the principles of artificial intelligence - are very 
stimulating mainly for simple type of the controlled plant and showed the possibility to use this method                     
for the FO controller parameters design. This method is more successful in the majority of cases                             
in comparison with the method based on classical deterministic linear or nonlinear function minimization. 
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From the above illustrative examples can also be seen the advantage of the FO PIλDµ regulator as compared 
with the classical integer-order PID regulator mainly as regards the properties of the robustness                             
of the regulation system. 

The main disadvantage of this algorithm is computational time and new problems arise in the design                
of parameters of FO regulators with this method mainly with more complex types of regulated systems such 
as for example the plant in the fourth example. In such a case it will be necessary to pay more attention                  
to the choice of optimization constraints and the form of the optimization function. 
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