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Decentralized robust control design using LMI 

 
 

Anna Filasová1 and Dušan Krokavec 
 
 

Návrh robustného decentralizovaného riadenia pomocou LMI 
The paper deals with application of decentralized controllers for large-scale systems with subsystems interaction and system 

matrices uncertainties. The desired stability of the whole system is guaranteed while at the same time the tolerable bounds 
in the uncertainties due to structural changes are maximized. The design approach is based on the linear matrix inequalities (LMI) 
techniques adaptation for stabilizing controller design. 
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Introduction 
 

Recently, a number of efforts have been made to extend the application of robust control techniques 
to decentralized systems using convex optimization involving LMI (Linear Matrix Inequalities). The paper 
presents some extensions and modifications of the problems concerning the system robust stability 
in the presence of interconnection among subsystems, as well as parameter uncertainties in the subsystem 
state transition matrices, and was motivated by the technique presented in (Befekadu & Erlich, 2005), which 
is generalized here for uncertain large-scale systems. 

 
System description 

 
Generally, a large-scale interconected system composed of N subsystems can be modelled 

by differential equations of the form 
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( ) ( )i i it =y C q , (2) 
with given subsystem matrix Ai, subsystem input matrix Bi and subsystem output matrix Ci of appropriate 
dimension, where i = 1,2, ..., N, qi(t) is the subsystem state vector, ui(t) is the subsystem control input vector 
and yi(t) is the subsystem measurement vector. It is assumed the matrices Bi, Ci to be of full rank, 
all the subsystem states can be observed or measured, pairs (Ai,Bi) and (Ai,Ci) are stabilizable 
and observable, respectively, and the subsystem (1), (2) is controlled by local state feedback control law  

 

( ( )) ( )i i i it =u q K q ,         (3) 
i.e. each subsystem is controlled by local control law, where Ki is a mi x ni constant matrix. 

It is supposed that the interconnection uncertainty terms in (1) can be written as 
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2( ( )) ( ( )) ( ) ( )T T
i i i i it t tε≤ T tg q g q q H H q ,       (6) 

εi > 0 is a parameter related to interconnection uncertainties in the subsystem, and Hi and Gi are constant 
matrices of appropriate dimensions. 

It is assumed that considered uncertainty matrices ∆Ai(t), i = 1,2, ..., N, are norm bounded and can be 
described as  (Krokavec & Filasová, 2002) 
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where Mi is a ni x li constant matrix, Ni is a hi x ni constant matrix, and Ii is hi x hi identitity matrix. Known 
matrices Mi, Ni define the structure of the state transition matrix uncertainties of the ith subsystem 
and the parameter uncertainty matrices Li(t) belong to the set 
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Using the overall system state variable vector q(t) defined in (6), the interconnected system model can 

be compactly written as follows 
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( ) ( )t =y Cq ,        (11) 
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1 1diag , ( ) diag ( ) ( )N t t= ∆ = ∆⎡ ⎤ ⎡⎣ ⎦ ⎣A A A A A AL ,    (13) 
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with the uncertainties upper-bounds (9), and interconections upper-bounds 
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Thus, the control law for the overall system will be 
 

1 2( ) ( ) , diag Nt t= = ⎡ ⎤⎣ ⎦u Kq K K K KL .     (16) 
 

Lyapunov function 
 

Since overall system (10), (11) is linear in q(t), the Lyapunov function candidate v(q(t)) can be 
of the form 

 
v( ( )) ( ) ( ) ( )Tt t t=q q P q t .       (17) 

Here v(q(t)) is a quadratic positive definite function with symmetric positive definite weighting matrix 
P(t). If a steady-state solution P of P(t) under the boudary condition P(�) = 0 exists, the evaluating 
derivative of (17) for steady-state solution P gives 
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It now follows for (18), using identity ( e.g. Krokavec & Filasová, 2006a) 
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respectively, where (21) is the matrix Lyapunov equation. 
Using (7), (8) the sum P∆A(t) + ∆AT(t)P in (21) can be rewritten as 
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where υi > 0, i = 1,2, ..., N, are design parameters.  Also, using (19), an upper bound of (22) is  
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Denoting 
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inequality (23) takes on the form as follows 
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and, in adition, the matrix Lyapunov equation (21) has an expression of the form 
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That ensures the negative definiteness of the quadratic function derivative under the constraints (9) 
and (15) for all trajectories of the closed-loop interconnected system (10), (11) under the control.  

 
Schur complement 

 
Let the linear matrix inequality be given as 
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Then Gauss elimination yields (Boyd at al., 1994) 
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and (28) implies  
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LMI form of design conditions 

 
Inequality (26) can be converted into LMI form using a technique based on Schur complements (29). 

Note that matrix inequality (26) is not convex in P and K, but with any linear fractional transformation can 
be transformed to those form. Thus, pre-multiplying (26) from left and right hand side by matrix P-1 (matrix 
P is a positive definite matrix and then matrix P-1 is positive definite, too) gives 
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which is convex in X and Y. If this LMI problem in X and Y has a solution, then the Lyapunov function 
v(q(t)) = qT(t)X-1q(t) proves the quadratic stability of the closed-loop system with state feedback u(t) = 
= YX-1q(t) = K q(t).  

Using LMI variables (31), the constraint (32) can be represented as the LMI 
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where 
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Note that it can also be considered an LMI in X, and µi, ηi, i = 1,2, …, N , defined in (31). 
The solution of this problem can be expressed as a state feedback (3) with state feedback gain matrix  
 

1−= =K YX YP ,        (35) 
X, Y is the unique solution of (33), X is a symmetric block-diagonal positive definite matrix, and Y, K are 
block diagonal matrices, respectively, generally nonsymmetric. 

 
Illustrative example 

 
To demonstrate the algorithm properties the multiarea model of a power system was used  (Veselý et al. 

2002, Krokavec & Filasová, 2006b). Given model structures satisfy (10) - (11), where 
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The goals were to design equal feedback gain matrices for both subsystems, independent on different 
subsystems parameter uncertainties.  

The problem was solved using the Self-Dual-Minimization (SeDuMi) package for MATLAB (Peaucelle 
et al., 2002). This package is constructed based upon the principles that one can describe the system 
to be analyzed using a MATLAB standard function and LMI variables, inequality constraints as well as LMI 
solution to be specified within the SeDuMi interface add-on for MATLAB. The LMI problem was feasible 
in  X and Y and results in 
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8.0866 2.4763 4.7279 2.6705 0 0 0 0
2.4763 3.4233 3.3195 2.2104 0 0 0 0
4.7279 3.3195 7.1296 1.9731 0 0 0 0
2.6705 2.2104 1.9731 2.8338 0 0 0 0
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1 2 1 27.3757, 7.2517, 1.2714, 1.3058µ µ η η= = = = . 
 
According to (35), the gain matrices were obtained as follows 
 

[ ]1 2 0.7555 1.4826 0.1114 1.0800= = − −K K . 
 
One can easily verify, that closed loop is stable with the same eigenvalues spectrum of the subsystem 

transition matrix ρ(A1) = ρ(A2) ={- 1.1692 ± j 0.0988,  - 2.0488 ± j 7.7686}.  
 

Concluding remarks 
 

The decentralized robust controller design is formulated as an optimization problem involving linear 
matrix inequalities and solved by LMI programming method, where the controller structures take into 
account the interactions among subsystems and the subsystem state transition matrices uncertainties. 
The most important practical application is that there are effective and powerful algorithms for these by LMI 
reformulated problems, that is, algorithms that compute the global optimum with non-heuristic stopping 
criteria (the global optimum is obtained to within some pre-specified accuracy). Presented decomposition 
principle gives enough flexibility to allow the inclusion of more general interaction structures and parametric 
uncertainties within all matrices of linear systems, given by the state-space description. 
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