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Adaptive control strategies for a class of nonlinear propagation 
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Stratégia adaptívneho riadenia pre triedu nelineárneho rozvoja bioprocesov 
This paper presents the control problem of a class of propagation bioprocesses that are carried out in fixed bed reactors. Since 

the dynamics of these processes are described by partial differential equations, in order to obtain useful models for control purposes, 
a possible method consists of approximation of their infinitely order associated models by finite order models. A class of nonlinear 
adaptive controllers are then designed based on these finite order models, which consist of a set of ordinary differential equations 
obtained here by orthogonal collocation method. Computer simulations conducted in the case of a fixed bed reactor are included 
to illustrate the performances of the proposed adaptive controllers. 
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Introduction 
 

Due to their advantages, over the last decades, the control of industrial bioprocesses has been 
an important practical problem attracting wide attention. The main motivation in applying control methods 
to such living systems is to improve operational stability and production efficiency. The operation in Stirred 
Tank Reactors (STR) has been and it is still a widely used technology in fermentation processes. But, other 
new technologies such as fixed bed, fluidized bed or air lift reactors, are considered for bioprocesses 
operation. These reactors present several advantages over the “classical” STR’s. For instance, the fixed bed 
and fluidized bed reactors are characterized by higher production performance, i.e. larger production capacity 
and higher productivity (Bouaziz, Dochain, 1993). From mathematical point of view, the dynamics of these 
processes are characterized by partial differential equations and therefore classified as distributed parameter 
systems (Bastin, Dochain, 1990; Bouaziz, Dochain, 1993; Christofides, 2001; Dochain et al.,1992). It is clear 
that the distributed parameter feature of the system makes the control problem even more difficult (Bouaziz, 
Dochain, 1993; Christofides, 2001; Dochain et al.,1992; Slotine, Li, 1991).  

In this paper the control problem of a class of propagation bioprocesses involving n components 
and m reactions that are carried out in fixed bed bioreactors without dispersion is presented. Since 
the dynamics of these processes are described by partial differential equations, for control purposes 
it is necessary to approximate these infinitely order models by finite order models. These approximate 
models are in fact a set of ordinary differential equations obtained here by orthogonal collocation method. 
More exactly, infinitely dimension of the initial parameter distributed model will be reduced by 
approximating the partial derivative equation of each reaction component by a finite number, equal to 1+p , 
of ordinary differential equations at  discrete spatial positions along the bioreactor. These points are 
chosen as zeros of some orthogonal polynomials. Note that the reduced order method of a fixed bed reactor 
model via orthogonal collocation has been presented in (Dochain et al., 1992; Petre, 2002; Petre et al., 2007).  

1+p

Using the obtained results in (Petre et al., 2007), to control these propagation bioprocesses, in this paper 
a class of nonlinear adaptive controllers are designed based on their finite order models. The nonlinear 
controller design is based on the input-output linearizing technique. The information required about 
the process are the measurements of the state variables and its relative degree. It must be noted that if for 
the analyzed process there are no accessible state variables, these will be estimated by using an appropriate 
state observer. Computer simulations conducted in the case of a fixed bed reactor are included to illustrate 
the  performances of the presented adaptive control strategies. 

The rest of the paper is organized as follows. Section 2 introduces the distributed parameter dynamical 
model of fixed bed reactors. Its reduction to an ordinary differential equation system is shortly presented 
in Section 3. The adaptive control strategies of propagation bioreactors are developed in Section 4, 
the performances of the designed adaptive controllers being presented in Section 5. Concluding remarks 
finish the paper. 
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Dynamical model of fixed bed bioreactors 

 
Consider a fixed bed bioreactor that is a reactor where the biomass is immobilized on fixed carriers, 

operating in plug flow conditions, i.e. without dispersion as shown in Fig. 1 (Petre et al., 2007).  
Assume that in bioreactor take place two reactions: (i) an autocatalytic growth reaction with one limiting 

substrate  and one biomass population S X  with the reaction rate Xµ=ϕ , where  is the specific growth 
rate; (ii) a death reaction of microorganisms , where  is the non-active biomass. If we assume 
that   leaves the bioreactor, then the distributed parameter dynamical model of this fixed bed bioprocess 
is given by (Petre, 2002; Petre et al., 2007): 
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where  is the influent flow rate, A is the constant bioreactor cross section,  is the yield coefficient and 
 is the death coefficient. The limit and initial conditions are defined as , 

, , where  is the influent substrate concentration and  

is the initial immobilized biomass. If we define the state vector  with the partitions 
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In the case of a fixed bed bioreactor in which m  biochemical reactions with  reactants take place, 
among which  are microorganisms fixed on some supports and which remain within the reactor, and  
other components flow through the reactor, the distributed parameter dynamical model will be described also 
by equations (2) with 

n
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Approximation of the dynamical model via orthogonal collocation 

 
Since the model (2) is infinitely dimensional, in this section we present the reduced order model 

obtained by approximating the initial model by a set of ordinary differential equations using the orthogonal 
collocation method (Petre et al., 2007).  
 

Fig. 1.  A schematic view of a fixed bed bioreactor. 
 
This method consists of expanding each variable ),( ztkξ  in (2) as a finite sum of products of some time 

functions and space functions: 
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where ),()(, ikik zztt =ξ=ξ , 1,,1,0 += pi K  are the values of ),( ztkξ  at p internal collocation points 
along the bioreactor determined by collocation method, and the basis functions )(ziβ  that are chosen 
as orthogonal functions, e.g. Lagrange polynomials (see Petre, 2002; Petre et al., 2007). The points 0zz =  
and  correspond to the input ( ) and the output (1+= pzz 0=z Lz = ) of the reactor, respectively. 

Using (4), the partial derivative of  appearing in (2) with respect to z can be written as: 2ξ
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By introducing (4) and (5) into (2), each partial derivative equation is transformed into p+1 differential 
equations at the p interior collocation points and at the output of the reactor. Thus it is obtained the following 
n(p+1) order system of one order ordinary differential equations: 

 
( ) ( ) ( ),,/;, 212222111 xxrKFxBAFxxxrKx Rin ++−== &&      (6) 

where: 

( )

( )
( )

( )
2,1,

,~

,~
,~

,;
~00

0~0
00~

,

1,21,1

2,22,1

1,21,1

21

1,

2,

1,

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

ξξ

ξξ
ξξ

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

ξ

ξ
ξ

=

+++

k

r

r
r

xxr

K

K
K

Kx

ppk

k

k

k

pk

k

k

k M

L

MOMM

L

L

M
 

with 
( ) ( ) ( ) ( );,, 1111 +×+×++× ℜ∈ℜ∈ℜ∈ pmpmpn

k
pn

k rKx kk  

;},{ with ,1,,2,1,,][ 22 nn
jijijiji BbdiagBpjiBB ×ℜ∈=+== K  

( ) .
~

,1,,1},{
~

,]
~~~

[ 22
0.2121

nn
jjjin

T
p

in
R bpjbdiagbtbbb

A
F

F ×
+ ℜ∈+=−=ξ⋅⋅= KL

 
Using the above methodology, for four internal collocation points, i.e. 4=p , the reduced order model 

that approximates the exactly infinitely dimensional model (1) will be described by a system of ordinary 
differential equations of the form (6) where: 
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Adaptive control of propagation bioprocesses 
 

In this section, the control problem of a class of propagation bioprocesses that are carried out in fixed 
bed reactors is presented. The nonlinear adaptive controllers are designed based on the finite order model (6) 
obtained from exactly model (2) by using the orthogonal collocation method. It can be see that the model (6) 
may by rewritten as (Bastin & Dochain, 1990; Petre, 2002): 

 
FDrKt +ζ−ζ=ζ )()(&          (9) 

where  is the state vector,  is the yield coefficient matrix, TTT xx ][ 21=ζ TTT KKK ][ 21= ),()( 21 xxrr =ζ  

is the reaction rate vector,  is the dilution matrix and  is the influent 
flow rate vector. 
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Problem statement 

For the bioreactors described by the model (6) the control objective is to regulate the concentration 
of a single component at the bioreactor output, under the following conditions: 

(i). The control input is the influent flow rate F . 
(ii). The controlled variable is measured not only at the bioreactor output, but also at every internal 

collocation point and at the reactor input (only in the case of external substrate). 
(iii). The yield coefficients are positive constants (some of them beeig unknown). 
(iv).  reaction rates are unknown. mm ≤1

For simplicity, we will denote by  the concentration of the controlled component, by  the value 
of  at every internal collocation point 

y iy
y izz = , pi ,,1K=  i.e. ),()( ii zztyty ==  and by  the value 

of the controlled component at the bioreactor output 
1+py
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may by expressed as a linear combination of state variables  and  as: 
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where  is a vector with appropriately dimension that selects the controlled variable. ][ 21
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Using (6), the dynamics of  in (10) is given by: 1+py
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Consider that for the bioprocess described by the model (1), the controlled variable is the substrate 
concentration at the bioreactor output, that is . Since the state vector 51 Sy p =+ ζ  is now given by  
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Using (12), the dynamics of  in (11) can be written as: 1+py
 

);(~~~~~)( 1,21,122,212221 ++++ ξξ+ξ−−= pp
T

inp
TinTin

p rKcbc
A

F
Bxc

A
F

ty&   (13) 

where: 
.]0[][],01[~

,,2252
T

in
T

indinin
T SXScc ==ξ==     (14) 

 121 



 
Emil Petre, Dan Popescu and Dan Selisteanu: Adaptive control strategies for a class of nonlinear propagation bioprocesses 

It is easy to verify that the term  in (13) is a linear combination only of variables  at the internal 
collocation points  The term 

2Bx iy
.,,1, pizi K= in,2ζ  contains the influent concentrations at the input 

of the bioreactor. With the condition (iv), the last term in (13) can be rewritten as (Dochain et al.,1992): 
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where 1
~r  and 2

~r  contain the unknown and known reaction rates respectively and θ  and Φ  are given by: 
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As a conclusion, θ  contains all the unknown parameters and Φ  contains the known reaction rates. 

Then, the dynamics of output  takes the form: 1+py
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Exactly linearizing controller 

As it was mentioned above, the control objective is to regulate the concentration of variable  at the 

output of the bioreactor at a desired value  by acting on the feeding substrate flow rate . 

1+py
*
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Controller design is made by using the input-output linearizing technique. Remember that the input-

output linearizing principle (Isidori, 1995) consists of the calculus of a nonlinear control law such that the 
behaviour of closed loop system (controller + process) is the same as the behaviour of a linear stable system. 

Assume that for the closed loop system we wish to have the following first-order linear stable dynamics: 
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where  is the desired value of .  *
1+py y

Firstly, we consider the ideal case, where maximum prior knowledge concerning the process is 
available. In particular we suppose that the parameters θ  in (17) are known and all the state variables are 
available for on-line measurements. It can be seen that equation (17) has the relative degree equal to 1 
(Isidori, 1995). Then, from (17) and (18), the above closed-loop dynamics will be achieved by implementing 
the following exactly linearizing nonlinear control law: 
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The control law (19) leads to the following linear error model: 
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with . It is clear that for )()()( 1
*

1 tytyte pp ++ −= 01 >λ , the error model (20) has an asymptotic stable point 
at . It is well known that because of the reaction rates (the dynamical kinetics are strongly nonlinear 
and not exactly known), for the bioprocesses (12) the adaptive control techniques result in the best 
performances (Petre, 2002; 2003). 

0=e

 
Adaptive control of propagation bioprocesses 

If the parameters denoted by θ  in (19) are assumed unknown (see the conditions (iii) and (iv)), these 
will be replaced by their estimates θ . Then the control law (19) becomes the adaptive control law given by: ˆ
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The estimates  can be on-line calculated by using for example a linear regressive parameter estimator 
(Bastin & Dochain, 1990; Petre, 2002), described here by the following equations: 

θ̂
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where  and  are the state variables of some linear and stable filters, Ψ 0Ψ Φ  stands for regressor matrix, Γ  
is a positive and symmetric gain matrix, and λ , named forgetting coefficient, and  are design 
parameters to control the stability and convergence properties of the estimator (for details see Petre, 2002; 
Sastry, Bodson, 1989). 

0>ω

 
Simulation results 

 
The performances of the designed nonlinear adaptive controllers were verified by numerous simulation 

experiments performed upon the fixed bed bioreactor described by the model (1). The values of bioreactor 
and process parameters used in simulation are (Petre et al., 2007): L = 1 m, A = 0.02 m2, =1k  0.4, 

0.05 h=dk -1. For the specific growth rate µ  we have chosen a Contois model: 
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with  0.35 h=µmax
-1 and 0.4. =CK

The internal collocation points of the reduced model (6) have been chosen as the zeros of the Jacobi 
polynomials (see Petre et al., 2007). For 4=p , 0=α  and 4=β  the abscises of the four internal collocation 
points are: z1 = 0.3121, z2 = 0.5789, z3 = 0.8130, z4 = 0.9627. Of course these values will determine the values 
of the entries  in the matrices  and . jib jiB jb

The control objective is to regulate the substrate concentration  at the bioreactor output, i.e. 
. From (6), (7) and (8) the dynamics of  is obtained as: 
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The exactly linearizing control law (19) takes the form: 
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The behaviour of the closed loop system in the ideal case when all the parameters are known 
is presented in Fig. 2.  

To verify the regulation properties of the controller for the reference variable, a piece-wise constant 
variation was considered as: 
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The initial simulation conditions correspond to a process steady state (see Petre et al., 2007). So, for 
the internal collocation points, the used values are: X0(0) = 0 mg.l-1, X1(0) = 44.1051 mg.l-1,                          
X2(0) = 19.8101 mg.l-1, X3(0) = 9.8169 mg.l-1, X4(0) = 6.2634 mg.l-1; X5(0) = 5.6010 mg.l-1;                             
S0(0) = Sin(0) = 7.5 g.l-1, S1(0) = 2.9403 g.l-1, S2(0) = 1.3207 g.l-1, S3(0) = 0.6545 g. -l-1, S4(0) = 0.4176 g.l-1, 
S5(0) = 0.3734 g.l-1. 

The value of the gain parameter  in (25) is 1λ 21 =λ . The system evolves in open loop from the time 
 to time  10 s, after which the system is closed by using the control law (25). The influent substrate 

concentration  acts as a perturbation given by 
0=t =1t

inS
))5/cos(05.0)25/sin(2.01()( 0 ttStS inin π⋅−π⋅+⋅=     (27) 
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with g/l for 5.70 =inS 1250 <≤ t s and 150 =inS g/l for s.  125>t

 
Fig. 2.  The behaviour of the closed loop system with the exactly linearizing controller. 

 
From Fig. 2 one can deduce that the controller (25) is efficiently both in regulation of controlled variable 

and in rejection of the perturbation . inS
Assume now that the death parameter  is known, and the yield coefficient  and the specific growth 

rate µ  are unknown. Assume also that  in (25) can be rewritten as: 
dk 1k

)(5 ⋅µ
 

555 )( Sρ=⋅µ         (28) 
where  is considered as an unknown positive parameter. It is clear that if 5ρ )(5 ⋅µ  should be known, then 5ρ  
is a function of bioreactor state given by: 
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Assume also that at the bioreactor output the only measured variable is the substrate concentration .  5S
It can be seen that the practical implementation of the control law (25) requires the knowledge 

of the state , and of the specific reaction rate 5X 5µ . 

Since the variable  is not directly measurable, this will be substituted by its estimate . For 
the estimation of unmeasured variable , independent of the unknown specific reaction rate , we use 
an asymptotic state observer (Petre, 2002), which can be derived as follows. Let us define the auxiliary state z 
as: 
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The dynamic of z  deduced from model (6)-(8) is expressed by the following linear stable equation: 

)ˆ(ˆ 5

5

1
550 SzkSbSb

A
F

z d
i

iiin
in −−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−= ∑

=

&      (31) 

where ẑ  stands for the estimate of z. 
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With the definitions of  and 5ρ z  in (28) and (30), respectively, the dynamics of output  takes 
the form: 

5S

)ˆ( 555
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5505 SzSSbSb
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i

iiin
in −ρ−⎟

⎟
⎠
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⎜
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−−= ∑

=

& .    (32) 

Then, the adaptive version of the control law (25) is given by: 
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where the estimates  of  are on-line calculated by using the regressive parameter estimator (22) where 
 and , 

5ρ̂ 5ρ

5ρ=θ )ˆ( 55 SzS −=Φ ẑ  is calculated by using (31) and the estimate of  is given by:  Xk1

551 ˆˆ SzXk −=         (34) 

 
The adaptive algorithm given by (33), (31) and (22) was implemented under the same conditions as in 

the first case. Note that the values of the controller design parameters used in simulations are: 5.21 =λ , 

, ,  and the initial conditions are:  = 0.139, 665.0=λ 10=ω )0(ˆ)0(ˆ
5ρ=θ 1.0)0( =Γ ,  = 2.6g.l)0(ẑ -1.  

The simulation results are shown in Fig. 3. As in the first case, the system evolves in open loop starting 
from  to time 0=t =1t  10 s, after that the system is closed by using the above adaptive algorithm. 
The perturbation  has the same evolution as in the ideal case.  inS

 
Fig. 3.  The behaviour of the closed loop system with the adaptive controller. 

 
From the graphics in Fig. 3 one can deduce that even if the initialization of ẑ  and  are different from 

their ideal values (given by 
5ρ̂

)0()0()0(ˆ 515 XkSz +=  and ))0()0(/()0(ˆ 55max5 SXKM +µ=ρ , the adaptive 
controller is efficiently both in regulation of controlled variable and in rejection of the perturbation  
despite the very high load variations of . 

inS

inS
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One can observe also a good behaviour both of the proposed state observer (31), (34) and parameter 
estimator (22). 

Moreover, it was proved that the adaptive algorithm given by (33), (31) and (22) is robust, that is even 
though the process model (1) has uncertainty parameters, the behaviour of closed loop system is good. It was 
verified that if the death coefficient  suffers variations by comparison to its nominal value                            
(e.g. h

dk
06.004.0 −=dk -1) the obtained results are still good.  

 
Concluding remarks 

 
In this paper it has been presented the design method of nonlinear adaptive controllers for a class 

of propagation bioreactors based on their finite order models.  
The controller design is based on the input-output linearization technique. The obtained algorithm was 

tested in the controlling problem of substrate concentration for a propagation bioprocess that is carried out 
in a fixed bed reactor. 

The simulation obtained results demonstrated that the designed adaptive algoritms used in the control 
of propagation bioreactors yield good results closely comparable to those obtained in the case when 
the process prameters are completely known and/or time invariable.  

Moreover, these algorithms prove themselves to be robust as well yielding good results even though 
the model parameters suffer variations between wide limits. It must be also noted that these algorithms can 
relatively easily be extended to other types of distributed parameters bioreactors: fluidized bed and air lift 
reactors. 
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