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Ultracapacitor Modelling and Control Using Discrete Fractional Order  

State-Space Model  
 
 

Andrzej Dzielinski1 and Dominik Sierociuk 
 
 

Ultrakapacitné modelovanie a riadenie použitím diskrétneho čiastočného riadenia modelu s rožloženými parametrami. 
In this paper the modelling of ultracapacitor system using discrete fractional order state-space system is presented. The obtained 

model is used for design and testing of state feedback controller with observer. 
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Introduction 
 

Ultracapacitors (aka supercapacitors) are electrical energy storage devices which offer high power 
density which was not possible to achieve in traditional capacitors. There are many aproaches 
to ultracapacitors modelling. Many of the autors use more or less complicated RC models (Buller, Karden, 
Kok, Doncker, 2002), which are accurate especially for low frequencies. Some of the authors describe 
ultracapacitors by RC transmision line (Belhachemi, Rael, Davat, 2000). In the papers (Quintana, Ramos, 
Nuez, 2006; Westerlund, Ekstam; 1994) very efficient approach using fractional order calculus was 
presented. In this paper the fractional order calculus approach to ultracapacitor modelling is used, especially 
discrete fractional order state-space model (DFOSS). 

 
Foundations of ultracapacitors technology 

 
The capacity of typical ultracapacitors is many times bigger than typical capacitors and has values from 

fractional parts of Farad to thousands of Farads. Its energy density has values about 2…9 Wh.kg-1 and power 
density is 3…8kW.kg-1. These values locate ultracapacitors between electrolytic capacitors and batteries. 

Thanks to their huge capacity, and small dimensions the ultracapacitors have found numerous 
applications in modern technology. 

One of the most prominent is the ultracapacitor application in hybrid cars (Burke, 2001; Wight, 2002). 
When a hybrid car is decelerating the electric motor acts as a generator producing a short, but high value 
energy impulse. This is used to charge the ultracapacitor. Charging the conventional batteries with such 
a short impulse would be extremely ineffective. Similarly, during start-up of the electric motor a short-time 
but substantial in value increase of the source power is needed. This is achieved by using the ultracapacitor. 

Other areas of ultracapacitor applications is in power electronics converters (mainly inverters) with DC 
circuit (Wodecki ,Koczara, 2004; Rufer, Barrade, 2002). 

Ultracapacitors can be found in wind power stations (Abbey, Joos, 2007), where they stabilise the power 
supplied to the grid. They are charged during the period of strong wind and discharge during calm periods. 
They can also be applied as energy saving subsystems in underground energy supply system. They are placed 
along the tracks and they collect the energy during braking and give it back during start-up. Also some back-
up systems in electronics and IT use ultra capacitors (e.g. computer memory back-up). 

In most of the applications mentioned it is essential to have a fairly detailed model of ultracapacitor. 
This model makes the design of control systems possible. The more accurate model we have, the more 
advanced control schema can be achieved. Control systems are needed e.g. to stabilise the ultracapacitor 
voltage which tends to fluctuate significantly. 

Ultracapacitor is build from two activated carbon plates mixed with electrolyte and separator (Zorpette, 
2005). Its working rule is based on Helmholtz effect, who found out that there exists some level of voltage 
below which the electrolysis does not take place. Below this level the electrolyte behaves as an insulator. 
When to the ultracapacitor electrodes the voltage below this level is connected the electrolysis does not start 
and the current does not flow through the electrolyte. However, in this case, the motion of ions contained 
in electrolyte (positive to negative electrode and negative to positive electrode) takes place. Because 
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of the absence of electrolysis, at the surface between electrode and electrolyte a very thin isolation film 
is formed. Thanks to this and to the very large area of the surface of the electrodes made of porous activated 
carbon (500-2000 m2/g) it is possible to achieve such a large capacity. 

 

 
Fig. 1.  Ultracapacitor general idea. 

 
Fig. 1 summarises this general idea of the ultracapacitor. The ultracapacitor electrodes are usually made 

of activated carbon soaked with electrolyte (e.g. sulphuric acid solution H2SO4) separated with thin porous 
membrane. This separator prevents the electrodes from short circuiting. It allows however, the movement 
of ions in the electrolyte. 

  

 
Fig. 2.  Ultracapacitor charging. 

 
Fig. 2 explains the process of ultracapacitor charging. The voltage applied to the plates 

of the ultracapacitor causes the movement of the ions. Negative ions move to the positive electrode (anode), 
and positive ones move to the negative (cathode). At the border between the elecotrodes and the electrolyte 
two layers are formed. This layers collect electrons and positive ions. This is why the ultracapacitors are 
sometimes called double-layer capacitors (Zorpette, 2005). The detailed description of the electrochemical 
processes going on in this area is found in (Endo, Takeda, Kim, Koshiba, Ishii, 2001). 

 
Fractional order calculus 

 
The fractional calculus (generalization of a traditional integer order integral and differential calculus) 

idea has been mentioned in 1695 by Leibnitz and L'Hospital. In the end of 19th century Liouville 
and Riemann introduced first definitions of fractional derivative. 
 
Continuous time fractional order calculus 

There exist two main definitions of the fractional order integrals and derivative: Riemann-Liouville 
and Grünwald-Letnikov. Both of those definitions are equivalent and for α>0 give results of the fractional 
order derivative, for α<0 frational order integral and for α=0 the same function. This is why those definitons 
are called differ-integrals definitions. The Riemman-Liouville definition was derived from the Cauchy 
iterated integral formula and is given as follows: 
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Definition 1 (Riemann-Liouville) The following operator: 
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is called fractional order differ-integral. 
 

where 
 

mm <1 α≤−  
and R∈α  (R  – set of real numbers) is an fractional order of the differ-integral of the function . )(xf

 
The Grünwald-Letnikov definition was derived from the iterated derivative formula and is given 

as follows: 
Definition 2 (Grünwald-Letnikov) The following operator  
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The Laplace transform of the fractional order differ-integral is given as follows: 
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Bode diagram of the fractional order itegrator 

Let us assume the following transfer function of fractional order integrator 
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The magnitude of the transfer function is given as follows (Jifeng & Yuankai 2005) 
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Fig. 3.  Bode diagrams of αs
1

 systems for 0.5,0.7,1=α  T=1. 

 
Bode diagram of the proportional system with integrator 

Let us assume the following transfer function, which is used later for modelling of the utracapacitor: 
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The magnitude of the transfer function is given as follows (Jifeng & Yuankai 2005) 
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The phase properties are given as follows: 
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Fig. 4 presents example of Bode diagrams for 1=T  and 0.5,0.7,1=α . 
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Fig. 4.  Bode diagrams of αs
11+  systems for 0.5,0.7,1=α . 

 
Discrete time fractional order calculus 

 
In this paper the following definition of fractional order difference (Oldham, Spanier 1974; Podlubny, 

1999) will be used. 
 

Definition 3 The following operator  
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is called the fractional order difference. 
Where  is an order of the fractional difference, R∈n Nk ∈  ( N - set of natural numbers) is a number 

of the sample for which the derivative is calculated. 
 
According to this definition it is possible to obtain the discrete equivalent of derivative (when n is 

positive), the discrete equivalent of integration (when n is negative) or when n equal to 0 the original 
function. 

More properties of the definition are to be found in (Ostalczyk, 2000; 2004a; 2004b; Jun 2001). 
 
Definition 4 The following set of equations 
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kk Cxy =         (10) 
are called the linear discrete fractional order system in state-space representation, where  is the order of 
the system.   

R∈n

 
The value of fractional order difference of state vector for time instant k+1 is obtained according to (8); 

from this value the state vector xk+1 is calculated using relation (9). The output equation is given by (10). More 
properties of DFOSS are presented in (Dzielinski, Sierociuk, 2006b; 2006a; Sierociuk, Dzielinski, 2006; 
2005) 
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Stability 

The article (Dzielinski, Sierociuk, 2006b) presents a stability criterion for the FOSS. It is easy to check 
and to use in the design of stable control systems. Even though this criterion does not define the whole 
stability area it is very useful in observer design. 
 
Theorem 5 The system given by the Definition 4 is stable if (but not iff) 
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Proof is given in (Dzielinski & Sierociuk 2006b). 
The  is a stability radius of the system, i.e., it is a radius of the disk in which stable eigenvalues 

(but not all stable eigenvalues) of the system are placed. 
),( knr

 
Observer  
Theorem 6 The state observer for Discrete Fractional State-Space Systems (called Discrete Fractional Order 
Observer (DFOO)) is given by the following equations 
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where  is an estimate of the state variable , kx� kx HCAF dd −=  and . BG =
 
Proof is given in (Dzielinski, Sierociuk, 2006a). 

 
Ultracapacitor Continuous Time Modelling 

 
In this section frequency domain identification results and methodology for ultracapacitor model are 

presented. This results is used for identification of the structure of the model (order of the model), this 
structure will be used in next section for discrete time modelling. 
 
Experimental setup of ultracapacitor system 

The experimental setup contains the electronic circuit with ultracapacitor connected to the DS1104 
Control Card. The electronic circuit is presented in Fig. 5 and contain operational amplifier OPA544, resistor 

 and ultracapacitor . OPA 544 is a high current operational amplifier and works in voltage 
follower configuration. This circuit is used for both continuous and discrete modelling. 

Ω180 F0.22

 
Fig. 5.  Electronic circuit of ultracapacitor system scheme. 
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Ultracapacitor Frequency Modelling 
Spectral transfer function is defined as 
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Where )( ωjUuc  is the Fourier transform of capacitor voltage and )( ωjI  is the Fourier transform of the 

capacitor current. Because the ultracapacitor is an electrolytic capacitor it can only accept positive voltages. 
That is why a signal with constant component )(2=)( tsintu ω+  as an input signal was used. Capacitor 
voltage (in steady state) in this case is equal to )()(2=)( ucc tsinAtu ϕωω ++ , and capacitor current is 

)()(=)( ci tsinAti ϕωω + . 
The Bode diagram was obtained from the following relations:  
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As a theoretical model the following transfer function was used:  
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Fig. 6.  Measured and theoretical Bode diagrams of ultracapacitor. 

 
The comparison of the measured data and Bode diagram of modelled transfer function is presented in 

Fig. 6. As it can be seen for frequences higher than 0,04 Hz the modelling is very accurete. For lover 
frequencies more complicated model should be used, as it was presented in (Quintana et al., 2006). 

Spectral transfer function of the system with ultracapacitor is defined as: 
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where )( ωjUuc  is the Fourier transform of the capacitor voltage and )( ωjU  is the Fourier transform of the 
input voltage. 

As a theoretical model the following transfer function was used:  
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In parameters identification by diagrams matching the following parameters were achieved 
, , 30.2319=K 1.7229=1T 0.45=α  
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Fig. 7.  Measured and theoretical Bode diagrams of system with ultracapacitor. 

 
The comparision of the measured data and transfer function diagram is presented in Fig. 7. And again 

for lover frequencies more complicated model should be used, as it was presented in (Quintana et al. 2006), 
but for our work this simple model is accurate enough. 

 
Ultracapacitor discrete time modelling  

 
The continuous fractional order state-space system of the system with ultracapacitor identified 

by diagrams matching in previous section is given as follows: 
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The modelling of such a system in not easy because of direct connection beetwen input and output 
system by matrix D (d0). In a control system this may lead to the algebraic loop. The value of resistance R 
was chosen so high in order to minimize this effect, but it still exists. That is why for discrete modelling the 
system with two state variables and order equal to α=0.2 was chosen. 

By output error minimalization the following discrete fractional order state-space system is obtained: 
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Results of discrete fractional order modelling of the system with ultracapacitor are presented in Fig. 8. 
Because of unknown initial state vector values of the system real input signal contains 0,2 V constant 
component which is not presented in the figures. 
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Fig. 8.  Results of discrete modelling of system with ultracapacitor. 
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Estimation and control experiment 

The observer for the discrete fractional order state space systems and design method was introduced in 
(Dzielinski & Sierociuk 2006a). 

Eigenvalues of the model obtained in previous section are equal to: 
 

0.389][0.013=)](diag[eig NAd +  
Stability radius given by stability criterion presented in (Dzielinski & Sierociuk 2006b) for L=∞ is equal 

to 0.2. Eigenvalues of the observer system matrices are chosen in order to guarantee asymptotic stability 
of estimation error equation and to make the observer faster than the observed system. 
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For chosen eigenvalues the following observer is obtained, according to method presented 
in (Dzielinski, Sierociuk, 2006a). 
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Fig. 9.  State feedback control results. 

 
When estimated state variables are accessible the state feedback control can be applied. Let us assume 

the regulator matrix as follows: 
 

0.05][0.05=K  
Fig. 9 presents results of state feedback control of the system with ultracapacitor. The left figure shows 

the system output compared with a model given by system matrix BKA− . The right figure presents the 
system input and reference input. These results are presented without  constant component. V2

 
Conclusions  

 
In the paper the resutls of modeling and control of the ultracapacitor system were presented. 

The ultracapacitor is an inherently fractional order dynamics. Therefore the discrete fractional order state-
space system introduced by the Authors seems to be an excelent alternative to the others approaches 
of modeling and control. 
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