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An adaptive control strategy for a class of recycled depollution 
bioprocesses 

 
 

Emil Petre1 and Dan Selişteanu 

 
 

This paper presents the design of a nonlinear multivariable adaptive control strategy for a class of wastewater depollution 
bioprocesses that are carried out in recycle bioreactors. The adaptive control structure is achieved by combining a linearizing control 
law with a new state observer and a parameter estimator, which play the role of the software sensors for on-line estimation of biological 
states and parameter variables of interest of the bioprocess. Simulation results are included to illustrate the performance of both 
estimation and control algorithms.  
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Introduction 
 

The control of bioprocesses is an important problem attracting wide attention. The main motivation 
is to improve the operational stability and the production efficiency of such living processes. Two known 
factors make bioprocesses control particularly difficult. First, these processes exhibit large nonlinearities, 
strongly coupled variables and often poorly understood dynamics. Second, the on-line measurements 
of biological process variables (biomass and/or product concentrations), which are essential for control 
design, is hampered by the lack of cheap and reliable on-line sensors. The nonlinearity of the bioprocesses 
and the uncertainty of kinetics impose the adaptive control strategy as a suitable approach (Dochain, 
Vanrolleghem, 2001; Nejjari et al., 1999; Petre, 2002). So, the difficulties encountered in the measurement 
of the state variables of the bioprocesses impose the use of the so-called “software sensors” (Dochain, 
Vanrolleghem, 2001). Note that these software sensors are used not only for the estimation of unmeasurable 
concentrations but also for the estimation of the kinetic parameters (Dochain, Vanrolleghem, 2001; Petre, 
Selişteanu, 2005).  

This paper presents the design of a multi-variable adaptive nonlinear control strategy capable of dealing 
with the model uncertainties in an adaptive way for a class of depollution bioprocesses for removal of two 
pollutants that are carried out in recycle bioreactors. Although for this depollution bioprocess were reported 
some nonlinear and adaptive control algorithms (Nejjari et al., 1999; Petre, 2002; Petre et al., 2008), in this 
paper, a new multivariable adaptive control algorithms is proposed and analyzed. More exactly, the problem 
of adaptive controlling of two reactant concentrations with two control inputs is illustrated in the case 
of the mentioned process. Assuming that the process relative degree is known, the adaptive algorithm 
is based on the nonlinear structure of the process model and is achieved by combining a linearizing control 
law (Isidori, 1995) with a new state observer and a parameter estimator which play the role of the software 
sensors for the on-line estimation of biological states and parameter variables of interest of the bioprocess. 
The resulted control method is applied in a depollution control problem in the case of a wastewater treatment 
process with active sludge, for which kinetic dynamics are strongly nonlinear and not exactly known.  

 
Dynamical model of bioprocess 

 
The activated sludge process is an aerobic process of biological wastewater treatment (Nejjari et al., 

1999). The aim of the wastewater treatment is to reduce the quantities of organic matter, nitrogen, 
phosphorus and solid matters in suspension. Usually, a wastewater treatment with active sludge is operated 
in at least two interconnected tanks: an aerator in which the biological degradation of the pollutants takes 
place and a sedimentation tank (settler) in which the liquid is clarified, that is the biomass is separated from 
the treated wastewater. A sche-matic view of this bioprocess with two influent pollutants is shown in fig. 1. 
This wastewater treatment is a very complex process, strong nonlinear and characterized by uncertainties 
regarding its parameters. In this paper, a simplified model of a wastewater treatment process for the removal 
of two pollutants (S1 and S2) from the treated water will be used. The dynamics of the plant (aerator + settler) 
is described by the following mass balance equations (Nejjari et al., 1999): 
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where X, S1, S2, C and Xr are the concentrations of the biomass (active sludge) in the aerated tank, 

of the substrate (pollutant) 1, of the substrate (pollutant) 2, of the dissolved oxygen and of recycled biomass 
respectively, Cmax is the maximum  concentration  of  dissolved  oxygen, 

 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
Fig. 1.  Schematic view of an activated sludge process. 

 
D = Fin/V – the dilution rate (Fin the influent flow rate and V the constant aerator volume),                     

µ – the specific growth rate, Y1 and Y2 are the consumption coefficients of substrates S1 and S2 respectively, 
r – the rate of recycled sludge, β – the rate of removed sludge, kC – a model constant, W – the aeration rate, 
Sin1 and Sin2 are the concentrations of influent substrates S1 and S2 respectively, and Cin is the concentration 
of dissolved oxygen in the inflow. 

 
Control strategies 

 
The main control objective in the case of the activated sludge process is to maintain the wastewater 

degradation at a desired low level, despite the load and concentration variations of the pollutants. 
Furthermore, an adequate control of dissolved oxygen concentration in aerator is very important. Then, 
the controlled variables are concentrations of pollutant P = P1 + P2 and dissolved oxygen C inside 
the aerator, that is y = [P C]T. Regarding the input control variables, the most realistic case is that when 
the rate of recycled sludge r and the air flow rate W are the control inputs: u = [r W]T.  

From (1)-(5) it can be seen that relative degrees of both controlled variables P and C, respectively, 
are equal to 1; therefore a square model [Petre et al. 2008] with two inputs and two outputs is obtained: 

 
PrDXtYYtP )1()()/1/1()( 21 +−µ+−=& )( 21 inin SSD ++       (6) 
CrDXtYYktC c )1()()/1/1()( 21 +−µ+−=&

inDCCCW +−α+ )( max      (7) 
For this class of wastewater treatment processes, the control objective is to make outputs y to track some 

specified piecewise constant references y* = [P* C*]T . 
For this process we consider that the specific growth rate µ(t) is described by a Monod-type model, i.e. (Nejjari 

et al., 1999): 
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with µmax – the maximum specific growth rate of the microorganisms, KS1, KS2 – the saturation constants 
for the substrate S1 and S2 respecti-vely, KC – the saturation constant for oxygen. 

Firstly, we consider the ideal case when the process is completely known, and all the state variables 
are available for on-line measure-ments. It can be shown, after long but rather straightforward calculations 
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applied to linear approximations of the model (6), (7), (8) that, the process is minimum phase. Assuming that 
for the closed loop system we wish to have a first order linear stable dynamical behaviour as 

 
0)()( ** =−⋅Λ+− yyyy &&          (9) 

with Λ = diag{λ1, λ2}, λ1, λ2 > 0, then, under the above conditions, from (6), (7) and (9) we obtain 
the following multivariable decoupling feedback linearizing control law: 
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B  is nonsingular and so invertible as long as P and Cmax – C 

are different from zero (conditions satisfied in a normal process operation). 
Since the prior knowledge concerning the process assumed previous is not realistic, in the following 

we will develop an adaptive control algorithm under the following realistic conditions: the specific growth 
rate µ is incompletely known and time-varying, the concentrations of biomasses X and Xr are not accessible, 
and the only measurements available on-line are: the output pollution level y, the dissolved oxygen 
concentration C and the influent substrate concentrations Sin1 and Sin2. Under these conditions an adaptive 
controller is obtained by combining the linearizing control law (10) with a new state observer for 
the estimation of the unknown state X and a parameter estimator for the estimation of the unknown specific 
growth rate µ.  

The unmeasured variables X and Xr can be estimated by using an asymptotic state observer (Dochain, 
Vanrolleghem, 2001). For that, let us define the auxiliary variables z1, z2 and z3 as follows: 

 
PXYYz ++= )/1/1( 211   
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rXz =3   

whose dynamics derived from model (1)-(5) are independent of the unknown kinetics:  
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Then, from (11) and (12) the estimates of X and Xr  are given by: 
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Now, the incompletely known specific growth rate µ in (8) can be rewritten as follows: 
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where θ is an unknown function depending of the process components, which will be on-line estimated 
by using an appropriately parameter estimator.  

Using (12), (13) and (14), the adaptive version of the controller (10) is given by: 
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In (15) the variables 1ẑ  and 2ẑ  are calculated via equations (13) and θ̂  is updated by using an observer-
based parameter estimator [Petre 2002] that here is particularized as follows: 
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where ω1, ω2, γ1 and γ2 are positive design parameters used to control the stability and convergence 
of the estimator (see [Sastry and Bodson 1989, Petre 2002], for stability and convergence properties).  
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Simulation results. Conclusions 

 
The performance of the designed multi-variable adaptive controller (15) by comparison to the exactly 

linearizing controller (10) (which can be used as benchmark), has been tested by performing extensive 
simulation experiments. 

The values of bioprocess parameters used in simulations are given in [Petre et al. 2008].  
The system’s behaviour was analyzed assuming that the pollutant concentrations Sin1 and Sin2 act as perturbations 

of the form Sin1(t) = 800(1+0.2sin(πt/ 20)), Sin2(t) = 700(1+0.2cos(πt/ 15)), and the kinetic coefficient µmax is time-varying 
as ))10/sin(1.01()( 0

maxmax tt π+µ=µ . Also, the influent flow rate Fin is time-varying. The gains and the tuning 
parameters of the control laws (10) and (15) are λ1 = 0.4, λ2 = 1.5, ω1 = ω2 = -50, γ1 = γ2 = 2.0e-6.  

The behaviour of closed-loop system using adaptive controller, by comparison to the exactly linearizing 
law is presented in Fig. 2. 

The first two graphics correspond to the controlled variables P and C respectively and the last two 
graphics correspond to the two control inputs. It can be seen that the response of the overall system with 
adaptive controller, even if this used much less a priori information, is comparable to those obtained using 
the linearizing controller.  

Note also the regulation properties and the ability of the adaptive controller to maintain the pollutant             
P  at a very  low level  despite the high load variations (for Sin1, Sin2 and Fin), and time variation of process 
parameters. 

 
Fig. 2.  Simulation results of adaptive control – 2, by comparison to exactly linearizing control – 1. 
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