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Calculation of a Shock Response Spectra

Jiri Tuma1, Marek Babiuch2, Petr Koci3

As it is stated in the ISO 18431-4 Standard, a Shock Response Spectrum is defined as the response to a given acceleration
acting at a set of mass-damper-spring oscillators, which are adjusted to the different resonance frequencies while their resonance
gains (Q-factor) are equal to the same value. The maximum of the absolute value of the calculated responses as a function of the
resonance frequencies compose the shock response spectrum (SRS). The paper will deal with employing Signal Analyzer, the software
for signal processing, for calculation of the SRS. The theory is illustrated by examples.
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Introduction

Shock Response Spectrum (SRS) analysis was developed as a standard data processing method in the early
1960’s. SRS was used by the U.S. Department of Defense. Now this signal processing method is standardized by ISO
18431-4 Mechanical vibration and shock –Signal processing –Part 4: Shock response spectrum analysis [1].

Let it be assumed that many small instruments or other parts as substructures (bodies) are mounted to the base
structure (baseplate) of a mechanical system [2]. The mounting elements are flexible and could be described by
stiffness and damping parameters. The mass of the mentioned substructure creates the mechanical oscillator, which is
a single-degree-of-freedom (SDOF) system. Now, we suppose that a vibration transient is excited on the base structure
as a consequence of either its environment or normal operation. Many sources of excitation could be described: Drop
impact during handling, explosive bolts on aerospace structures, bolted joints suddenly opening and closing with
an impact, reciprocating engine fuel explosions inside cylinders, etc. For example we could assume that vibration
transient results from the dropping of a mechanical system onto a concrete surface while producing an impact load on
one corner of the base structure. The impulse force acting to substructures excites lightly damped oscillations. The
peak value of the substructure acceleration may cause destruction due to the large inertia force. It is required that the
mentioned substructures, in fact equipments and instruments, have to survive mechanical shocks. The impulse force
and shock exposure have to be analyzed.

Two main parameters of the SDOF system, which are specifying free oscillation, are the substructure natural
frequency and damping. There are many measures of describing damping. This paper prefers the damping ratio
Q = 1/(2ξ ) and the quality factor Q, which is approximately equal to a resonance gain of the lightly damped systems.
For a normalized value of the quality factor Q the substructure natural frequency fn plays the key role. In this case the
substructure natural frequency determines a peak acceleration, which is excited by an arbitrary transient acceleration
input, such as shock or impulse force load. The dependence of the acceleration peak value (maximum or minimum) on
the substructure natural frequency in the form of a diagram is called a shock response spectrum (SRS) of the impulse
force. SRS of the impulse force or acceleration forecasts the excited substructure acceleration in dependence on the
substructure resonance frequency. As it was stated above, SRS assumes that the impulse force is applied as a common
base input (base plate) to a group of independent hypothetical SDOF systems (bodies), which are only different in the
natural frequency, see Fig. 1. Damping ratio is typically fixed at a constant value, such as 5%, which is equivalent to
the quality factor Q, which equals to 10. An example of the vibration amplitude of the SDOF system as a response to
the input impulse force is demonstrated in Fig. 1. The peak values of the amplitude determine SRS of the associated
impulse force. In a general sense SRS allows to compare the dynamic effects of various shock sources through their
effect on the set of the SDOF systems.
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Fig. 1: Group of single-degree-of-freedom systems .

Single-Degree-of-Freedom Model

The equation of motion, which is describing oscillation of the single-degree-of-freedom (SDOF) system, shown
in Fig. 2, is written in the form

mẍ1 =−c(ẋ2− ẋ1)− k(x2− x1) (1)

where x1 is a base structure (baseplate) displacement and x2 is a response displacement of a single-degree-of-freedom
system (body), m, c, k are mass, damping parameter and stiffness, respectively. The corresponding velocity as a time
function is designated by v1 and v2 and acceleration is designated by a1 and a2. The Laplace transfer function relating

Fig. 2: SDOF, a body (substructure) flexibly mounted on a baseplate (base structure).

the substructure mass displacement to the base displacement is as follows

G(s) =
X2(s)
X1(s)

=
cs+ k

ms2 + cs+ k
(2)

Assuming the zero initial condition, the relationship between the Laplace transform of displacement and velocity
and relationship between the same transform of velocity and acceleration are as follows

V1(s) = sX1(s), V2(s) = sX2(s), A1(s) = sV1(s), A2(s) = sV2(s) (3)

where

L{x1(t)}=X1(s), L{v1(s)}=V1(s), A{a1(t)}=A1(s), L{x2(t)}=X2(s), L{v2(s)}=V2(s), A{a2(t)}=A2(s) (4)

Alternatively the Laplace transfer function relating the substructure mass velocity to the base velocity and the
substructure mass acceleration to the base acceleration are as follows

G(s) =
V2(s)
V1(s)

=
A2(s)
A1(s)

=
cs+ k

ms2 + cs+ k
(5)

All the transfer functions are of the same form. Introducing the SDOF system natural frequency fn, Q factor
(resonance gain) or damping ratio ξ (fraction of critical damping), we obtain

fn =
1

2π

√
k
m
, Q =

√
km
c

, ξ =
1

2Q
=

c
2
√

km
(6)

The Laplace transfer function relating the base acceleration to the substructure mass acceleration could be written
in the form

A2

A1
=

ωns
Q +ω2

n

s2 + ωns
Q +ω2

n
=

R1

s− s1
+

R∗1
s− s∗1

, (7)
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where R1 is a residue, s1 is a pole and R2, s2 are corresponding complex conjugate quantities.
For a given quality factor Q, natural angular frequency fn and base structure acceleration a1 in the form of the

time function, it is theoretically possible to calculate the acceleration response a2 in the form of the time function as
well and consequently to determine the peak value (either maximum or minimum)) of this time function. The problem
is that the input acceleration is in the form of the sampled signal with the sampling interval TS = 1/ fS, not in the
form of a continuous signal. The transfer function (7) has to be approximated by the Z-transform function, i.e. to be
transformed into a discrete system (digital filter).

Discrete Approximation of a Continuous Transfer Function

This part of the paper deals with a mapping of the s-plane (continuous time) to the z-plane (discrete time) saving
the important properties of the continuous system after transformation into a discrete system of the same order. In the
case of the transfer functions (2) and (5), which are identical, it concerns the resonance frequency and resonance gain.
The approximation of the differential equation by the difference equation can be performed by using the numerical
integration of the sampled function using trapezoidal rule. This method results in the bilinear transform, which distorts
the frequency due to the fact that the infinity frequency interval of the continuous system is mapped onto the finite
frequency interval of the discrete system. To avoid the frequency distortion the bilinear transform is extended by a
frequency correction saving the identity of the transfer function for the resonance frequency

G∗(z) = G(s) |
s= 2π fP

tan(π
fP
fS

)

z−1
z+1

(8)

where fS is the sampling frequency and fP is the prewarping frequency, both in Hz. The frequency responses, before
and after mapping, match exactly for the prewarping frequency. It is therefore desirable to substitute the prewarping
frequency by the resonance frequency.

The approximation, which is preferred by the ISO 18431-4 Standard, is called the Ramp Invariant Method and
was designed by Ahlin, Magnevall, and Josefsson [3]. This method is based on the approximation of the s-plane
transfer function

G1(z) =
1

s+a
(9)

of the same form as (7) (except a residue) by the z-plane transfer function

G1(z) =
β10 +β11z−1

1+α11z−1 (10)

The parameter a determines the pole (−a) of transfer function (9) and parameters β10, β11, α11 are coefficients
of the approximating difference equation of the first order. The impulse response, corresponding to the linear system
(9), is as follows

g1(t) = L−1{G1(s)}= exp(−at) (11)

In order to derive the general formula for a response of the system with the transfer function (9) the general input
and output signal are introduced. Let y2(t) be an output signal of a continuous linear system with input y1(t) and the
impulse response g1(t) can be computed by using the convolution integral

y2(t) =
∫ t

0
g1(t− τ)y1(τ)dτ (12)

The measurement of continuous signals results in a sequence of samples in the discrete time t = nTS, where
n = 0,1,2, . . . For the linear system, which is described by the impulse response (11), the value of the output signal at
the time t = (n+1)TS could be evaluated by using the mentioned convolution integral

y2((n+1)TS) =
∫ (n+1)TS

0
exp(−a((n+1)TS− τ)y1(τ)dτ =

= exp(−aTS)

(∫ nTS

0
exp(−a(nTS− τ)y1(τ)dτ +

∫ (n+1)TS

nTS

(. . .)dτ

)
= (13)

= exp(−aTS)y2(nTS)+ exp(−aTS)
∫ TS

0
exp(au)y1(u+nTS)du

68



Acta Montanistica Slovaca Ročník 16 (2011), číslo 1, 66-73

The continuous function y1(t) in between two adjacent samples may be approximated either by a constant value
or by a ramp or by any suited function. Undependably of the approximation of the unknown values of the function in
between samples y1(nTS) and y1(nTS +TS), the value of y2(nTS +TS) is computed by using a formula

y2((n+1)TS) = exp(−aTS)y2(nTS)+β10y1((n+1)TS)+β11y1(nTS) (14)

which corresponds to the discrete transfer function

G∗1(z) =
β10 +β11z−1

1− exp(−aTS)z−1 (15)

As it was mentioned before, the approximation by the ramp is preferred [3]

y1(t) = y1(nTS)+
y1((n+1)TS)− y1(nTS)

TS
(t−nTS), nTS ≤ t < (n+1)TS (16)

This approximation enables to compute the value of the parameters β10 and β11.
Now let us return to the kinematic quantities as displacement, velocity and acceleration, which were designated by

x1(t), v1(t) and a1(t) respectively, for the base structure and by x2(t), v2(t) and a2(t) respectively for the substructure.
The formula (7) demonstrates the decomposition of the second order system into two parallel systems of the first
order. The continuous transfer function (9) can be approximated by the discrete transfer function (15). Therefore, the
approximation transfer function of the second order system can be composed of two discrete transfer functions (15),
but each of them is multiplied by the corresponding residue. The digital filter corresponding to SDOF system responses
is the second order filter of the IIR (Infinite Impulse Response) type, with the general Z-transform expression

G∗(z) =
A2(z)
A1(z)

=
β20 +β21z−1 +β22z−2

1+α21z−1 +α22z−2 (17)

where β20, β21, β22, α21, α22 are parameters of the second order filter.
The transfer function (17) corresponds to the second order difference equation relating the samples x1(nTS) and

x2(nTS) of the base structure and substructure displacements, respectively

x2(nTS) = β20x1(nTS)+β21x1((n−1)TS)+β22x1((n−2)TS)−α21x2((n−1)TS)−α22x2((n−2)TS) (18)

where n is an integer number of the same meaning as in formula (13).
The displacement samples can be substitute by the velocity, v1(nTS) and v2(nTS), or acceleration, a1(nTS) and

a2(nTS), samples.
This chapter describes how to approximate the continuous transfer function by the discrete transfer function.

Detailed description of a procedure how to create a formula for calculation of the filter parameters is omitted. The
value of the digital filter parameters is calculated by formulas given below, which are tabulated in the ISO 18431-4
Standard

β20 = 1− exp(−A)
sinB

B
(19)

β21 = 2exp(−A)
[

sinB
B
− cosB

]
(20)

β22 = exp(−2A)− exp(−A)
sinB

B
(21)

α21 =−2exp(−A)cosB (22)

α22 = exp(−2A) (23)

where

A =
ωnTS

2Q
, B = ωnTS

√
1− 1

4Q2 (24)
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Comparison of Frequency Responses Calculated by Different Methods

For given parameters such as Q and fn or ωn = 2π fn, one can calculate the frequency response which is corre-
sponding to the transfer function of the system (7) and approximation of this continuous system by a discrete linear
system using the ramp invariant method and the bilinear transformation taking into acount the frequency distortion
by using the formula (8). Frequency response of the continuous system is calculated in the frequency range to the
Nyquist frequency ( fS/2) by substituting s = jω . The substitution z = exp( jωTS) is used for calculation of the fre-
quency response of the discrete system. According to Fig. 3, no difference between the resonant frequency of the
continuous and discrete systems is observed. The same result can not be obtained for a natural frequency fn which
is approaching the Nyquist frequency. There is the only difference between the frequency responses for frequencies
near the Nyquist frequency and higher than the resonant frequency which does not affect the calculation of the SRS
for which is important matching the frequency responses for the natural frequency.

Fig. 3: Comparison of frequency responses.

Transfer Function for Relative Velocity and Displacement Response

For some substructure, the difference of the velocity or displacement between the base structure and the men-
tioned substructure, which is excited by the base structure impulse load, is more dangerous than the substructure
acceleration. The other transfer functions, which are relating the velocity or displacement difference to the base
structure acceleration, are shown in table 1. The corresponding filter coefficients could be found in [1].

Tab. 1: Mechanical impulse

Relative velocity Relative displacement
response spectrum response spectrum
V2−V1

A1
= −ms

ms2+cs+k
X2−X1

A1
= −m

ms2+cs+k
X2−X1

A1
ωn =

−mωn
ms2+cs+k

X2−X1
A1

ω2
n = −mω2

n
ms2+cs+k

Software Tools for SRS Calculation

There are many software tools for signal analysis, for example Matlab, which is a high-performance language for
technical computing. The disadvantage is that the high frequency sampling is not integrated in the unified environment
and a user has to import the input data. On the other hand there is a software tool, which is specialized only on signal
measurements and recordings without signal processing. Signal Analyzer, the VSB - Technical University of Ostrava
indoor software, extended by scripts is an experiment how to overcome the mentioned disadvantage. Signal Analyzer
is software intended to support laboratory measurements. The recorded data may be immediately tested by an analyzer
virtual instrument. The script language is described in paper [4].
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Fig. 4: Signal Analyzer script for calculation of SRS.

Half Sine as an Input Function

The popular testing function for evaluation of SRS is a half-sine function as the time history of the input acceler-
ation. The mentioned testing signal and the result of calculation of the SDOF response in the form of SRS are shown
in Fig. 5.

Fig. 5: Shock Response Spectrum of a half-sine impulse (interval of 11 ms).

Acceleration response is represented on the y-axis, and natural frequency of any given hypothetical SDOF is
shown on the x-axis. The y-axis of both the plots is in multiple of the free fall acceleration. Any units of acceleration
are admissible as well. SRS covers frequency over three decades. 30 responses of the SDOF system in each decade
are calculated for different values of the natural frequency. The natural frequencies form a geometric sequence with
common ratio 1.080. Therefore SRS in Fig. 5 seems to be a continuous function. The maximum value of the
acceleration response is reached for the substructure natural frequency approximately around of 70 Hz. For a given
impulse it is dangerous to tune the resonance frequency of the substructure, which is attached to the base structure, to
the value in the interval ranging from 30 to 200 Hz due to the large impact loading if the resonance frequency greater
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than 200 Hz causes the impact loading to be at the margin of acceptability.

Measurement Example

An examples of the shock measurements and calculation SRS is added to demonstrate the described calculation
of SRS. The example shows effect of hammer tip material on the shock response spectrum. The hammer tip was
made from various materials, such rubber, plastic and aluminum. The base structure is a steel cylinder of the 1.55
kg mass, which is hanging on flexible tapes allowing displacement in axial direction of the cylinder. It is assumed
that some substructure is mounted on the basic structure. An accelerometer was attached to a cylindrical body, whose
acceleration is measured. Because that the hammer is intended to excite a mechanical structure for experimental modal
analysis it is equipped with a force transducer. The hammer hit to the steel cylinder excites both the force and base
structure acceleration.

The time history of the impulse force is shown in Fig. 6 while the corresponding acceleration responses are shown
in Fig. 7. It must be emphasis that the vibration responses are needed as the input data for computing of the shock
response spectrum in order to assess mechanical loading the substructures, which are mounted on the base structure,
when a shock occurs. The mechanical impulse in table 2, as an integral of force with respect to time, serves to the
comparison of the mentioned test hit intensity.

Tab. 2: Mechanical impulse

Material rubber plastic aluminum
Impulse [Ns] 0.1506 0.1311 0.0661

The shock response spectrum was computed for unified values of impulse with respect to the reference impulse
of the hammer hit with the rubber tip. According to the impulse-momentum theorem, the resulting momentum of the
testing mass, i.e. velocity of the testing mass, is identical for all the hammer tip materials. The result of the SRS
calculation is shown in Fig. 8. As it is evident the maximum excitation for the rubber tip of the hammer is reached at
the resonance frequency of 250 Hz, while the plastic tip excites the maximum vibration response at 2000 Hz and the
aluminum tip is able to excite the maximum response of the mass vibration at 3500 Hz. The peak at approximately
2 Hz corresponds to the natural frequency of the mass-spring system. SRS informs on the effect of the impulse force
on the vibration frequency and can be used to compare individual hits by the hammer for the experimental modal
analysis.

The effect of the impact force on the single-degree-of-freedom system, which is tuned to a resonance frequency,
describes the properties of the mentioned force better than its time history of the impact force or acceleration. The rea-
son for this statement is that SRS draws attention to particularly sensitive frequency at which can be excited extremely
high amplitude of oscillation

Fig. 6: Impulse force acting on the base structure.

Conclusion

The paper presents the method of calculation of a shock response spectrum, which is corresponding to an acceler-
ation exciting the resonance vibration of substructures. SRS determines the maximum or minimum of the substructure
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acceleration response as a function of the natural frequencies of a set of the single-degree-of-freedom systems model-
ing the mentioned substructures.

The vibration (or shock) is recorded by signal analyzer in the digital form, commonly as acceleration. The
transfer function of the single-degree-of-freedom system is approximated by an IIR digital filter in such a way that
the filter response to the sampled acceleration may be easily calculated. This shock response spectrum shows how the
individual components of the impulse signal excite the mechanical structure to vibrate.

Fig. 7: Impulse force acting on the base structure.

Fig. 8: SRS of the shock, which is excited by the hammer.
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