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Application of fuzzy methods in tunnelling 
 
 

Ľudmila Tréfová, Edita Lazarová and Víťazoslav Krúpa1 
 
 

Full-face tunnelling machines were used for the tunnel construction in Slovakia for boring of the exploratory galleries of highway 
tunnels Branisko and Višňové-Dubná skala. A monitoring system of boring process parameters was installed on the tunnelling machines 
and the acquired outcomes were processed by several theoretical approaches. Method IKONA was developed for the  determination of 
changes in the rock mass strength characteristics in the line of exploratory gallery. Individual geological sections were evaluated by 
the descriptive statistics and the TBM performance was evaluated by the fuzzy method. The paper informs on the procedure of the design 
of fuzzy models and their verification. 
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Introduction 
 

The process of the rock mass disintegration by the full-profile tunnelling machines (TBM) is affected by 
a whole range of factors that can be divided into three main groups: 
1. Factors of rock environment (geological formation, rock mass properties), 
2. Factors of the boring machine (constructional parameters of the boring machine and the cutting tools, 

effect of disk tool wear on the TBM cutterhead), 
3. Applied boring regime and operational conditions affected by a work organization. 

 
All of these factors affect the input and output variables of the boring process and determine their 

mutual relations. The relations between several variables of the process have been explored in the previous 
theoretical research using the mathematical and statistical procedures. The effects of disintegrated rock, 
applied boring regime and of the wear of cutting tools on the boring effectiveness were investigated 
primarily. Linear or non-linear regressions were used in their description. A model of the interaction between 
the rock mass and the tunnelling machine was developed based on previous research findings, experience 
and knowledge using the conventional mathematical approaches [1, 2, 3, 4]. The model, named IKONA, 
provided the determination of rock characteristics on the tunnel face during the drilling. Recently, 
the research team has focused on modelling the effectiveness or performance of the TBM using the fuzzy 
methods.  

 
Modelling of the TBM performance by the application of fuzzy methods and selection of model 

variables 
 

The long-term experience from the research of rock disintegration process, the outcomes from the data 
analysis obtained from the boring process monitoring, as well as the complexity of the system rock-tool were 
leading to the idea to use a fuzzy approach for the modelling of the TBM performance.  

Fuzzy modelling is an approach realized by searching for the main relation between the system variables 
described in the terms of fuzzy sets. Intervals represented by the fuzzy sets enable a mathematical description 
of the inaccuracy of the system (rock mass-TBM), as the sets are overlapped and provide a subsequent 
transition from one field of the universe values to another one.  

Fuzzy model was designed in the Matlab environment using the Fuzzy Logic Toolbox. The design used 
a Takagi-Sugeno fuzzy modelling method, which provides generation of fuzzy If-Then rules from numerical 
data.  

 
The model consists of a set of fuzzy rules, which describe a local linear relation between the input 

variables and the output in the following form: 
 

,...,K,i   ,bxaŷ Then A is x and ... and A is x If:R iiiinnii 2111 =+= , 
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where Ri is the i-th rule, x=[x1,…, xn]T ∈ X is an input vector of the variables  (antecedent), Ai1,…, Ain are  
fuzzy sets defined in the antecedent space and iŷ  is an estimate of the output (consequent) of the model for 

the given rule, K denotes the total number of rules. The total output ŷ ∈ Y of the model is calculated using 
the weighted average of the shared outputs of the rules, where the conditions of its assumption part were 
fulfilled: 
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where  βi(x) is a degree of the fulfilment of the i-th rule.  

 
The base knowledge for the selection of variables entering the presented fuzzy model was the fact that 

insufficient adjustment of the applied boring regime (Mk, F) to the particular geological conditions (σ, RQD, 
quartz, all variables explained later) causes an oscillation of the advance rate of the TBM, which significantly 
affects the TBM performance, thus affecting the effectiveness of the TBM use, cost-efficiency of the tunnel 
construction process and the time period of the tunnel construction. The advance rate v [mms-1] is a function 
of the tool penetration depth into the rock h [mm] and of the cutterhead revolutions n [s-1]. 

]s.mm[,n.hv 1−=       (3) 
Advance rate v is then determined from the output variable of the model, i.e. from the penetration depth 

h. A multiple of the advance rate v and the surface of the excavated tunnel face S define the performance of 
the TBM boring Q. Full-face boring uses the following formula for the calculation of the instantaneous 
performance of excavation 

]h.m[,S.n.hS.vQ 13 −==      (4) 
where S [m2] is a size of excavated tunnel face surface and this value is a constant for a given machine. 

 
Following values enter the fuzzy model presented in this paper: a torque Mk, thrust F, rock disturbance 

RQD, model strength of rock mass σ and the quartz content (expressed as a degree of 4-degree scale 
informing on the presence of the quartz dikes on the tunnel face). Torque and thrust represent the boring 
regime parameters; the model strength, quartz content and RQD contain the information on the rock mass 
properties. The output variable is a penetration depth. The scheme of the fuzzy model is presented in 
the Fig. 1. 
 
 
 
 
 
 
 
                       
 

 
Fig. 1.  Scheme of fuzzy model of penetration depth. 

 
Training data set was formed by the data from the boring section 680 – 700 m from the eastern portal of 

the Branisko exploratory gallery. The range of tested variables was defined from the real minimal and 
maximal measured values in the observed section. Individual variables were examined in the intervals 
presented in the Table 1.  

 
Tab. 1.  Range of values of training data set in the stationing 680-700 m. 

Variable Mk  
[kNm] 

F 
[kN] 

RQD  
[ - ] 

σ  
[MPa] quartz h  

[mm] 

Min.   90.6 1036 47   32 1 1.8 

Max. 165.0 2147 89 224 4 7.8 
 
The section 680 – 700 m is formed by the amphibolites exclusively regarding the geological structure. 

The Fig. 2 shows the behaviour of the variables entering the model. 
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Fig. 2.  Visualization of behaviour of input parameters depending on stationing in the section 680-700m of the Branisko exploratory 
gallery. 

 
 

Adjustment and complementation of monitored data – program support  
 

Initial database for the model design was comprised from the archived data files from the boring process 
recorded during the boring of the Branisko exploratory gallery. The data were monitored and scanned 
by a computer system developed at the Institute of Geotechnics SAS, which was installed on the full-profile 
tunnelling machine WIRTH that bored the eastern part of the exploratory gallery on total length of 2340 m. 
The system provided scanning of basic parameters of boring process in the interval of approximately 2,3 s in 
order to optimize the whole process and obtain relevant data complementing the results of detailed 
engineering-geological investigation. Monitored and scanned parameters were thrust, torque, revolutions and 
the position of the cutterhead protrusion. Several useful variables were calculated in real-time directly during 
the boring, such as instantaneous boring rate, specific disintegration energy and recommended optimal thrust. 
Secondary outputs of the system were large archived data files, which formed the training data in further 
theoretical research. 

Tunnelling machine crossed the paleogene formation in initial tunnel sections; further only rocks of 
crystalline complex were present. Crystalline complex was represented by high-grade metamorphic rocks and 
bodies of granitoids, mainly by amphibolite gneisses, biotite-amphibolite gneisses, biotite gneisses, 
amphibolites and leucocratic granitoids. The part of the exploratory gallery bored by a TBM was divided into 
42 geological sections. The contribution uses the analysis of the first 27 geological sections. The data on 
stationing (location), rock type and percentage of monitored data (expressing a share of the monitored section 
length to total length of particular geological section) in individual section are shown in Tab. 2. 
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Tab. 2.  Brief description of 27 geological sections and percentage of monitored data in geological sections. 

Geological section 
Stationing 

Rock type % of 
data from - to 

[m] 
1 139-183 sandstone 48.4 

2 183-191 contact of paleogene and crystalline complex 68.8 

3 191-200 biotite gneiss 100.0 

4 200-226 biotite gneiss 50.0 

5 226-298 muscovite-biotite granitoid 94.4 

6 298-348 biotite to quartz gneiss 100.0 

7 348-426 biotite-amphibolite gneiss  78.2 

8 426-482 biotite- to biotite-amphibolite gneiss  28.6 

9 482-526 biotite- to biotite-amphibolite gneiss 72.7 

10 526-540 biotite-amphibolite gneiss, mylonitized significantly  57.1 

11 540-590 biotite-amphibolite paragneiss 100.0 

12 590-652 biotite-amphibolite paragneiss 93.5 

13 652-680 biotite- to biotite-amphibolite gneiss, amphibolites 67.9 

14 680-720 amphibolites 91.3 

15 720-770 amphibolites, amphibolite gneiss 89.0 

16 770-850 amphibolites, amphibolite gneiss 100.0 

17 850-916 amphibolites, amphibolite gneiss 100.0 

18 916-947 amphibolites, amphibolite gneiss, mylonitized 90.3 

19 947-1025 amphibolites, amphibolite gneiss 55.1 

20 1025-1054 amphibolites, amphibolite gneiss, locations of blastomylonites  72.4 

21 1054-1072 amphibolites, amphibolite gneiss 55.6 

22 1072-1108 amphibolites, amphibolite gneiss 100.0 

23 1108-1193 amphibolites, amphibolite gneiss 45.9 

24 1193-1234 amphibolites, amphibolite gneiss 78.0 

25 1234-1263 amphibolites, amphibolite- to biotite-amphibolite gneiss 3.4 

26 1263-1295 amphibolites, amphibolite- to biotite-amphibolite gneiss; rocks exhibit cleavage (schistosity) 56.3 

27 1295-1320 amphibolites, amphibolite- to biotite-amphibolite gneiss 16.0 

 
  
Data were processed using a new developed software application, [5]. Designed program provided fast 

preview and access to the archived files, data reading according to geological sections, calculation of further 
necessary variables, and visualization of their behaviour. Database was complemented by the results of 
engineering-geological investigation. Adjustment of the behaviour using the smoothing algorithm [6] 
eliminated the extreme values from the original data.  

 
Utilization of algorithms of fuzzy clustering analysis 

 
Fuzzy clustering method was used for the searching for the relation between the variables. Cluster 

analysis using the mathematical methods reveals the structure in multidimensional data, i.e. it locates 
the clusters in multidimensional feature space. Its aim is to classify the data in a way that the similarities 
between them within the formed clusters are very large and the similarity between the data from different 
clusters is very small. Non-hierarchic method classifying the data into predefined number of clusters was 
used for data classification into the clusters. Relations between the variables presented in Fig.1 were searched 
in such manner. The records are then constituted of the samples of such variables in discrete time steps.    

Suppose N records in measurement.  Application of clustering evokes a division of the set of records N 
into c subsets – clusters in a manner that the distance between the records and their centres is minimized. 
Analysed data are collected into the matrix Z created by chaining the regression data matrix X and output 
vector y:  
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Every record is described by n+1 dimensional vector zk=[x1k, …, xnk, yk]T = [xk

T, yk]T. A cluster analysis 
is realized for such arranged data, producing the decomposition matrix U: 
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where its elements µk,i represent the membership degrees of the record zk to the cluster i. Variables µk,i gain 
the values from the interval <0,1>, while following is valid: 

.Nk1             ,1,ci1     ,N0
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ki ≤≤=µ≤≤<µ< ∑∑

==     (7) 
Analysis of extremes of evaluating indexes was realized in order to determine the number of clusters, 

which is described in details in PhD. thesis of Tréfová [5]. Based on the results from the thesis, an optimal 
number of clusters was determined for the description of relations between the evaluated data, i.e. sufficient 
number is 8 clusters. Fuzzy C-means (FCM) algorithm was used for the classification of the records into 
clusters, which enables to each record to belong into several clusters. Membership to cluster is expressed 
by a  membership degree in interval <0,1>, where the contributions in cluster for one record must be equal to 
1. Boring section with length of 20 m, comprising of 10 000 records, was analyzed. Fig. 3 presents a program 
for data clustering designed in Matlab environment, which used Fuzzy Clustering and Data Analysis Toolbox 
developed at the Veszprem University in Hungary [7]. Fig. 4 graphically illustrates the cluster centres using 
the FCM method.  

 

 
Fig. 3.  Program for data clustering [5]. 

 

(5) 

(6) 
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Fig. 4.  Overview of cluster centres obtained from records in stationing of 680-700m. 
 
Memberships of variables into the clusters were acquired by a spot projection of membership degrees 

of records into the space of individual variables. Fig. 5 presents memberships of variables to one cluster. 
Areas, where the highest values (i.e. approaching to 1) were obtained, represent the strongest relations 
between the variables. Such areas may be characterized as a definition domain of the cluster. The relations 
weaken or fade with decreasing values.  

 

 

Fig. 5.  Membership degrees of evaluated variables for one cluster. 
 
Application of cluster analysis technique brought an algorithm for clusters formation from records based 

on their similarity. State space was decomposed into multidimensional non-linear boring process into 
individual areas with similar behaviour of variables. This analysis was realized in order to linearize the data 
dependencies in acquired areas using the local linear models of TBM performance.  
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Formation of rules 
 

Number of clusters defines an optimal number of rules describing the relations of analysed variables 
behaviour acting in model. 8 rules are sufficient for parametrization of presented model. Approximation 
of spot projections of decomposition matrix into the space of five input variables of the model provided 
a definition of 8 membership functions, for every variable entering the model, Fig. 6. 

 

 
 

Fig. 6.  Membership degrees of variables entering the model. 
 
Following linear equations for individual rules were determined by parametrisation of the consequent:  
 

49021403510055901682001120102101 ,quartz.,.,RQD.,F.,M.,h k ++−−+−= σ  

46641615430055902122001180104302 ,quartz.,.,RQD.,F.,M.,h k ++−−+−= σ  

32061812980062902427001180126903 ,quartz.,.,RQD.,F.,M.,h k ++−−+−= σ  

09922012430055802515001290126104 ,quartz.,.,RQD.,F.,M.,h k ++−−+−= σ  

31091713490038501896000910095505 ,quartz.,.,RQD.,F.,M.,h k +−−−+−= σ  

63841518120045701896000910091506 ,quartz.,.,RQD.,F.,M.,h k ++−−+−= σ  

32301312930058201698001150096207 ,quartz.,.,RQD.,F.,M.,h k ++−−+−= σ  

60492011810042302075001010122608 ,quartz.,.,RQD.,F.,M.,h k +−−−+−= σ  

 
Model consists of following rules, which join the membership functions of input variables with 

corresponding linear equations, Fig. 7. 
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Fig. 7.  Rules of fuzzy model. 
 
 

Outcome of the model and rules adjustment 
 

Comparison of measured and modelled results of the penetration depth exhibits a good accordance of 
data in analysed section after application of the above presented ranges of trained data. Average standard 
deviation between the real penetration depth and the one presented in the model in training section was 
0,29 mm, Fig. 8. Regarding the range of the penetration depth, the coefficient of variation corresponds to 
4,85 %. In reality, this 20 m long section was bored in approximately two days, with 171 m3 of rock 
excavated by the WIRTH machine with 16 retractions. Boring took place in amphibolites and the section 
belonged to the geological section number 14. The Fig.8 shows that more substantial deviations were present 
in the areas of significant increase of penetration depth. Apparently, larges pieces of rocks were chipped in 
these areas, which happens at favourable orientation of discontinuities filled with crushed rock material. 
The model did not cover such areas, probably due to the lack of local model, i.e. cluster analysis was not able 
to identify the clusters describing such behaviour of the system TBM – rock mass due to insufficient number 
of records.  

 

 
 

Fig. 8.  Comparison of monitored and fuzzy modelled values of penetration depth. 
 
Designed model was applied in further sections. Application of the model on the data in stationing            

590-652 m is presented in the Fig. 9. 
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Fig. 9.  Comparison of monitored and fuzzy modelled values of penetration depth in geological section 12. 
 

 
 

Fig. 10.  Visualization of the range of training data in geological section 11. 
 
Red colour in Fig. 9 and Fig. 10 indicates the segments from geological sections 12 and 11, respectively, 

that were not covered by the rules, i.e. at least one input variable of the model was out of the range of training 
data. In such cases, fuzzy model uses a boundary value (minimum or maximum) of relevant variable for 
the calculations.  Increasing of the model deviations applied out of training data range was expected. 
Analysis of geological sections with insufficient coverage of input data approved that the most significant 
deviations from real penetration depth origin in the sections with the thrust lower that its boundary value, i.e. 
lower than 1037 kN. This evoked an adjustment of the rules. Geological section 12 was selected for this 
purpose. Data confined into the ranges of initial training set were filtered out of the section 12 in order to 
omit the duplication of initial rules. 

Analysis of clustering coefficients for complementing training dataset determined 4 rules as optimal 
ones. New rules extended the data range of the model according to Table 3. 
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Tab. 3.  Ranges of extended training data set. 

Variable Mk  
[kNm] 

F  
[kN] 

RQD  
[ - ] 

σ  
[MPa] quartz  H 

[mm] 

Min.   60.0   609.0 18.7     9.7 1.0 1.7 

Max. 165.0 2147.0 89.0 224.0 4.0 7.8 

 
New ranges of data in the model were described by 4 membership functions. Following linear equations 

correspond to formed complementing rules:  
031707640126902396002540207209 ,quartz.,.,RQD.,F.,M.,h k ++−−+−= σ  

9816078901056024760024402003010 ,quartz.,.,RQD.,F.,M.,h k ++−−+−= σ  

0015028001492020980025001869011 ,quartz.,.,RQD.,F.,M.,h k +−−−+−= σ  

6417136401638028410033802554012 ,quartz.,.,RQD.,F.,M.,h k ++−−+−= σ  

 
Applications of extended model to individual geological sections led to the improvement results 

in studied geological section, which implies also from the comparison of Fig. 9 and Fig. 11.  

 
Fig. 11.  Comparison of monitored and fuzzy modelled values of penetration depth in geological section 12 after complementing 

the rules. 
 
Average deviation in the section 12 decreased from 0,53 mm to 0,30 mm after the above-presented 

adjustment. Modified model was applied on the other geological sections. The application of the improved 
model enhanced the sections 10-14 and 17-27 and slightly declined the sections 15 and 16. However, 
unsatisfactory results were obtained in the geological sections 1-9. These sections differ from the others in 
geological formation. The sections 1-9 comprised of the paleogene rocks and of the transition zone from 
paleogene to crystalline complex.  

Authors supposed that the error was caused by the rock strength entering the model. A fuzzy model of 
rock strength was designed in order to confirm the hypothesis. Fig. 12 shows a scheme of the applied fuzzy 
model.  

 
 
 
 
 
 
 
 
                       

Fig. 12.  Scheme of fuzzy model of rock strength. 
 
Twelve clusters, which describe the relations of analysed behaviour of variables entering the model, 

were determined based on the outcomes of the analysis of the extremes of evaluating indexes. Following 
linear equations were determined for individual rules:  

 

382651477059873823152341030922 ,quartz.,RQD.,h.,F.,M., k
F ++−−+−=σ  

7837942170295357226726760715722 ,quartz.,RQD.,h.,F.,M., k
F ++−−+−=σ

2233679710673241249825750552223 ,quartz.,RQD.,h.,F.,M., k
F ++−−+−=σ  

5038888291104851520925710724524 ,quartz.,RQD.,h.,F.,M., k
F ++−−+−=σ  
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16444854827903532201128070946325 ,quartz.,RQD.,h.,F.,M., k
F +−−−+−=σ  

3937582021076358356825950670626 ,quartz.,RQD.,h.,F.,M., k
F ++−−+−=σ  

61285483870953438221623980336227 ,quartz.,RQD.,h.,F.,M., k
F ++−−+−=σ  

00452099041160523001426330044038 ,quartz.,RQD.,h.,F.,M., k
F +−−−+−=σ  

758511180260910930417290340019 ,quartz.,RQD.,h.,F.,M., k
F ++−−+−=σ  

0489304203443153514179703774110 ,quartz.,RQD.,h.,F.,M., k
F ++−−+−=σ  

8185225702530152924168102723111 ,quartz.,RQD.,h.,F.,M., k
F +−−−+−=σ  

7969431601852135633177802851112 ,quartz.,RQD.,h.,F.,M., k
F ++−−+−=σ  

 
Designed fuzzy model of rock strength refuted such hypothesis. Detailed analysis of results proved that 

the model behaved in the sections 1-9 as TBM was excavating the rocks of the crystalline complex, 
according to the training data set. After implementation of fuzzy strength into the model, which simulated 
the crystalline complex conditions, the average deviations of both model and measured penetration depth 
improved significantly also in the geological sections 1-9. The coefficient of variation decreased in these 
sections from 30,36 % to 9,23 %. Improvement of the results in whole stationing of the section 8 was 
obtained after the application of model, where the coefficient of variation decreased from 12,98 % to 4,39 %. 
Maximal error of the model remained in the geological section 2, in the transition zone from paleogene to 
crystalline complex, with the coefficient of variation value 23 %. The section 2 is represented by the highest 
disturbance (rock jointing) degree and the largest inhomogeneity of present rock material. Table 4 shows 
average deviations between the monitored and fuzzy modelled penetration depth before and after extension 
of the rules and after the implementation of fuzzy strength into the model in geological sections 1-27. 
 

Tab. 4 Comparison of average deviation between measured and fuzzy modelled penetration depth values in geological sections 1- 27. 

Geological section 
Deviation 

[mm] 

Before rules extension After rules extension After application of fuzzy strength  
1 0.9767 2.4613 0.4622 
2 2.0887 2.8570 1.3777 
3 2.8255 3.0009 0.6685 
4 3.3254 3.5223 0.3264 
5 3.5493 3.6264 0.3438 
6 1.1666 1.3808 0.7627 
7 0.7627 0.8408 0.5529 
8 0.8824 0.9640 0.2987 
9 1.0911 1.1013 0.2770 
10 0.4735 0.4410 0.4132 
11 0.5222 0.4644 0.3596 
12 0.5274 0.3044 0.3973 
13 0.8164 0.6631 0.4625 
14 0.2897 0.2888 0.3029 
15 0.6856 0.7264 0.4020 
16 0.4948 0.5361 0.3445 
17 0.5077 0.3785 0.3817 
18 0.4480 0.3690 0.3877 
19 0.2197 0.2097 0.4046 
20 0.6072 0.5285 0.4742 
21 0.7426 0.3935 0.3106 
22 1.5269 0.4798 0.6186 
23 1.0963 0.4234 0.5237 
24 0.6166 0.6171 0.3963 
25 0.4705 0.4672 0.2758 
26 0.5202 0.5202 0.2182 
27 0.5018 0.5018 0.2391 

 
 

Conclusions 
 

Use of cluster analysis algorithms for the design of fuzzy model of boring process and of expert system 
appears to be a promising method of better understanding and control of the process. Expert systems 
designed for the geotechnical purposes are subject to the specifics of the geotechnics, as the rock 
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environment cannot be describes explicitly and only approximate and simplified concepts of the rock 
environment are used. The results presented in the paper were obtained ex-post from monitored data acquired 
in boring of the Branisko exploratory gallery, which caused that it is not possible to identify the sources of 
significant differences between measured and modelled penetration depth of the disc rollers into the rock in 
several short sections of the tunnel. However, obtained average deviations between measured and calculated 
fuzzy values of penetration depth signalise a good accordance for in-situ conditions. After the application of 
the fuzzy strength, the model was modified for a wide scale of excavated rocks, i.e. the model was 
generalized for whole TBM-bored section of the tunnel.   
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