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Outlier Detection in 3D Coordinate Transformation with Fuzzy Logic 
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Coordinate measurements inevitably contain outliers that affect the results of transformation. Conventional methods based on the 
leasts squared method determine the outliers by minimizing the selected objective function. Fuzzy Logic can be used to analyze the 
outliers. In this study, several outlier detection methods are described and applied to a real case consisting of a triangulation network. 
Results show that for outlier detection methods are not as efficient as Fuzzy provides a non-iterative solution in contrast to conventional 
methods. 
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Introduction 
 

The use of satellite technologies in position navigating, the establishment of geodetic networks 
and determination of point coordinates has brought a new approach in which both the horizontal 
and the vertical coordinates are investigated together. It is known that the 3D coordinates of the points 
in various global datum can be determined faster and more accurately using the Global Positioning System 
(GPS) method. For example in the International Terrestrial Reference Frame (ITRF96) datum the position 
of points is determined by the GPS method, (URL1). The current application of new technologies 
in reference frame definition have made it necessary to form 3D point coordinates from defined different 
datum (coordinate systems) and to use the 3D datum (coordinate) transformation for efficiency. The known 
common coordinate points in both coordinate systems are needed to calculate the transformation parameters 
in coordinate transformation. First the transformation parameters are calculated by taking the coordinates 
of the common points as a measurement value and then the coordinates of other points are transformed using 
these transformation parameters. So, the selection of common point selection is very important and directly 
affects the results, (Kutoglu and Ayan 2006). 

It is virtually impossible to avoid gross, systematic and random errors within a data set. While gross 
and systematic errors can be detected from the data set without calculation being required, outliers that 
are very close to random errors in terms of size can only be determined through the application of outlier 
tests. The literature reports different approaches have been used to determine the outlier measurements. 
The main approaches to determine outliers can be grouped as fallows; Conventional methods, Robust 
Estimation and Artificial Intelligence techniques. Conventional outlier detection procedures, introduced 
by Baarda (1968), use iterative approaches to find outliers in the data set, (Koch 1999). Lately, the Robust 
Estimation method was proposed by Huber (1981), and Hampel at al. (1986) as an alternative to conventional 
methods. A new approach is using Artificial Intelligence techniques for outlier detection for example Neural 
Networks and Fuzzy Logic technique. The latter was suggested by Zadeh (1965), can also be used 
to geodetic networks for outlier detection, (Berberan 1995. Sun 1994, Aliosmanoglu and Akyilmaz 2002).  

In the coordinate transformation, the use of point coordinates as a measurement and in some 
transformation models, the acceptance of these measures as unerring are result in a negative situation. 
In order to obtain the significant results, both analyses of the models that measurements are erroneous 
and outlier detection has to be carried out on the results. The measurements are taken as erroneous 
in the conditional adjustment with unknown models and the total least squares models. 

In this study, firstly the 3D coordinate transformation models, one of the main fields of mathematics 
and geodesy, are explained. The solution is calculated by conditional adjustment with unknown models. 
After the outlier detection by Conventional Methods and Fuzzy Logic are theoretically explained, 
the solutions can be obtained for these methods using a real case consisting of a triangulation network. 
The advantages and disadvantages of the outlier detection methods are assessed. 

 
2. Methods 

 
2.1. Coordinate (Datum) Transformation Models 

When a geodetic network is set up, the datum has to be determined in order to orient the network space. 
Geodetic datum defines both the reference ellipsoid and the coordinate system. Therefore, 
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the transformations between two datum and between two coordinate systems are in fact the same operation. 
Coordinate transformation is a common practice in geodetic studies. 

For 3D coordinate transformation, many models have been developed including Bursa-Wolf, 
Molodensky-Badekas and Veis, (Thompson, 1976). These methods define 3D datum with 7 parameters 
(3 translations (X0,Y0,Z0), 3 rotates (εx,εy,εz) and 1 scale parameter (κ)). Bursa-Wolf and Molodensky-Badekas 
models are the most popular. These models define and solve the relationship between two orthogonal 
coordinate systems with transformation parameters similarity transformation as given below.  

 

( )
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−

−
++

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

i

i

i

xy

xz

yz

i

i

i

W
V
U

 
εε

εε
εε

 κ
Z
Y
X

Z
Y
X

1
1

1
1

0

0

0

                                      (1) 

 
Here, (Ui,Vi,Wi) and (Xi,Yi,Zi) show the positions in the first and secondary coordinate systems, 

respectively. In the Molodensky-Badekas model, the shifted and reduced values of the point coordinates 
according to a local starting point is used. Equation (1) is linearized according to the datum parameters used 
as unknown and shifted common point coordinates parameterized as below: 

 
0=++ wBvAx                                                                                          (2) 

 
Equation (2) is the main equation of conditional adjustment with unknown models. The measurements 

are erroneous in this adjustment method. In Equation (2); A and B are the design matrices, x is an estimate 
of the transformation parameters, v is residual of measurements and w is the misclosure vector. 
In the solution of Equation (2) by Least Squared method (LSM), llQ , the inverse weights matrix 

of the coordinates used as measurements, xxQ , the cofactor matrix of datum transformation parameters, 

and vvQ , the cofactor matrix of the residuals, can be calculated (Vanicek, 1972).  
 

( ) ( )
( ) llllll

ll

BQNAANAANNBQk;   QBQv

ANAw;       QNAANA-;       xBBQN

TTT
vv

T

T
xx

TTT

⎟
⎠
⎞⎜

⎝
⎛ −==

===

−−−−−

−−−−−

11111

11111

     (3) 

 
The validity of the results of the solution produced by LSM depends on the completeness and accuracy 

of the mathematical model that has been built. In the test of the model hypothesis, the equality of a priori 
variance 2

0σ  and a posteriori variance 2
0s  should be statistically explicated. In the application, both null 

H0 and alternative HS hypotheses are formed and test size T is computed. The validity of the hypothesis which 
has been statistically explicated. In the case where H0 is valid, it is assumed that the differences are derived 
from random errors, and the model may be accepted according to a certain probability level. Otherwise, 
HS will be valid. In that case, the functional model is extended and tested. Afterwards, for the test 
of the stochastic model, the outlier detection process is started, (Thompson, 1976).  
 
2.2. Outlier Detection Methods 

It is unavoidable that there are gross or outlier measurements in the data set. These gross errors can 
be determined and eliminated while the linearization equations of the adjustment model are formed. 
According to error theory, other errors such as outliers that are very close to random measurement errors can 
be determined only by explicating the solutions found by the LSM. 

Not all the outliers are due to bad data having gross errors. In some cases, these measurements may 
contain important information for the data set. If the model is built well for example, considering 
the distribution of the data, the outlier measurements may be removed from the group without an additional 
evaluation. Furthermore, there may be a failure in the shape of the mathematical model because 
of the excessive amount of outlier measurements, (Hampel, 1986).  

 
2.2.1. Conventional Outlier Detection Methods 

Conventional Outlier Detection Methods are the Data-Snooping Method (W-Test), Tau Test and t- Test. 
In these methods the hypothesis test is performed to determine the il∇  error in any il measurement                 
in a l measurement vector. Then, the test value is calculated for each measurement and the test value 
is compared with the critical value of the distribution table. If the test value is larger than critical value, then 
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the largest value is considered to be the outlier and it should be removed from the data set. The iteration 
continues until there is no outlier left in the data set. The test value, critical value and distribution information 
are given in Table 1; α0 is the significance level, f  is the freedom degree, 2

01s  is the posteriori variance 
eliminated from the model errors, and  N, τ, t represent respectively normal, tau and student distribution, 
(Koch 1999). 

 
Tab. 1.  Conventional outlier detection methods. 

Method Data-Snooping Tau-Test t-Test 

Test Value  
iivv

i
i

Qσ

v
W

0

=  

iivv

i
i

Qs

v
T

0

=  

iivv

i
i

Qs

v
t

01

=  

Test Distribution  ∼ N( 0, 1) ∼ ( )21 0 /-αf,τ  ∼ ( )211 0 /-α,f-t  

Critical Value  ( )21 0 /αN −  ( )21 0 /-αf,τ  ( )211 0 /-α,f-t  

 
 
2.2.3. Fuzzy Logic and Fuzzy Set Theory 

Recently, many approaches have been tested on decision making theories. Some of the Artificial 
Intelligence techniques that are used in outlier analysis are, Neural Networks, Support Vector Machine, 
Fuzzy Logic, (Cateni at al. 2008). 

Fuzzy logic is a logical model providing a general idea about the decision process in the analysis 
of the data set. The fuzzy logic suggested by Zadeh (1965) is, essentially, an approach that allows transition 
values to make a definition between the conventional values, such as right/wrong, yes/no, high/low. 
The main purpose of the method is to bring a certainty to assigning a membership degree to the concepts, 
which are hard to express or have difficult meaning, (Shi at al. 1999). Fuzzy set theory was suggested 
as an alternative to classical set theory. In a fuzzy set, for any component to have a membership degree 
between 0 and 1, the limit of the classical set is extended and the degrees of a fuzzy event to occur or to exist 
are measured. In classical set theory, an object is either a component of a set or not, whereas in fuzzy logic 
an object can be given memberships in many sets. A fuzzy system consists of three main parts, which are 
fuzzification, rule base and defuzzification. Firstly, fuzzification can be defined as a transfer between 
a definite system and a fuzzy system and it describes a property of an object in a certain fuzzy set. 
The objects can belong to ‘low, middle, high’ property classes with membership functions and each object 
is assigned a membership degree between 0 and 1. Secondly, the rule base combines the membership 
functions from the fuzzificator with the rule handling data such as ‘if, and, although, if not’ which is based 
on the database and stored there. Thirdly, in the defuzzification unit, the rule results that are obtained from 
the rule handling unit are evaluated in the defuzzificator and turned into definite results, (Aliosmanoglu 
and Akyilmaz, 2002).  

The membership functions define the degree to which an input belongs to a fuzzy set. These 
membership functions are chosen empirically and optimized using a sample input/output data. The If-then 
rules define a connecting the antecedent to the consequent (i.e. input to output). These rules are given weights 
based on their criticality, (Syed and Cannon, 2004). With this approach, measurements can be classified 
according to their membership degrees by adequate membership functions. In general, the membership 
degrees between 0 and 1 are real numbers, 0 shows that there is no membership and 1 shows full 
membership. The different forms of membership functions can be chosen while fuzzy sets are formed. 
The most common membership functions include the triangle, trapezoid, Gauss curve and sigmoid. 
As the membership functions represent the fuzzy set, the selection of their shape and form directly affects 
the decision process.  

In classical set theory, the values of measurement are grouped into two parts. In fuzzy set theory, more 
groups are formed up. The classification of group members is done effectively by using the membership 
function. Many geodetic problems, deformation analysis, parameter estimation, geoid determination, data 
analysis in a geographical information system, outlier detection of leveling networks and GPS networks,  can 
be solved with the help of fuzzy model, (Hampel at al., 1986; Konak at al., 2005; Kutterer, 2002). 

The most commonly used methods in fuzzy set theory are Mamdani and Takagi–Sugeno methods,  
(Xue-Gong, 2001). These methods define a membership function, then measurements are grouped according 
to the membership degree. Consequently, the decision can be made as to whether a measurement is an outlier 
or not, thus an outlier data set can be formed.  Also, an outlier data set can be formed using the membership 
values obtained from the fuzzy set theory in the LSM solution, (Konak at al., 2005). 
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2.2.3.1. Outlier Detection By Fuzzy Logic  
According to the LSM, when the given functional model includes the l∇  measurement error vector, 

the mathematical relationship between the residuals and the measurement errors is established with 
R redundancy matrix. R can be written following equation. 
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From Equation (4), it can be seen that each measurement is affected by all measurement errors 

depending on the ratio of the size of the component corresponding to its redundancy matrix. Both 
in correlation and uncorrelation adjustment, the rank of the R is equal to the excess measurement number; 
hence, this matrix is not positively defined. In other words, errors cannot be calculated with a single meaning. 
In this case, instead of measurement errors l i , the size of residuals is dealt with in both conventional outlier 
tests based on statistic decision-making process. 

However, in fuzzy logic, membership relationships determining the effects of the errors on residuals 
may be formed using the redundancy matrix. According to Equation (4), row elements of redundancy matrix 
show the total effect on one residual of errors, which can possibly occur in all measurement errors, 
the column elements of redundancy matrix show the total of effect on the other residuals of each 
measurement error. This provides a possibility of examining the errors, derived from the distribution of errors 
and also to absorb them. 

The steps of the fuzzy set theory are given below:   
 
Fuzzification: After the initial adjustment, taking the relationship given in Equation (4) into 

consideration, the test values for each relation are calculated. After comparing the statistical limits with 
the test value of each residual, the residuals in the fuzzy set are divided into two measurement groups: one, 
the normal residuals (the test values under the statistical limits) N{Vi}, and the other, the abnormal residuals 
(the test values above the statistical limits) M{Vi}. After the hypothesis tests, the membership function shows 
the residuals of the members. The components of the N{Vi} subgroup consisting of the test values below 
the statistical limit are given zero membership value. The components of the M{Vi} subgroup consisting 
of the test values above the statistical limits are given a membership value between 0 and 1, depending 
on the statistical limit deviations, degree of freedom and the errors probability of the test.  
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If each residual has Ti  test value of measurements, q critical value, cij relation between the test value 

and the critical value, and d the scale factor, membership function is calculated by the above equation 
(Kutoglu 2006).  

Using the Equation (5), residuals, which are not affected from the outliers, can easily be calculated 
with fuzzy set theory. 

 
( ) ( )ii VMVN µµ ~~ 1−=                                                                                        (6) 

 
Rule Base: To determine the relations between measurement errors and fuzzy relationships, ijr~ , 

the components of the redundancy matrix normalized between 0 and 1, are used. Measurement errors can 
be separated into two groups, similar to the residuals. For example, the A subgroup may consist 
of the measurement errors, which have maximum affect on the abnormal residuals and the B subgroup, may 
consist of the measurement errors which have minimum effect on the normal residuals. If R~  normalized 
redundancy matrix is used to define the membership values of A and B sets and these membership values are 
taken as ( )iAµ

l∇
~  and ( )iBµ

l∇
~ , in the calculation of the membership values. The membership function ( )iAµ

l∇
~  
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which is the maximum relative effect of ith measurement errors of residuals having a ( ) ≥ivMµ ~ 0.5 

membership value in the ( )ivM  fuzzy function set, and then; the membership function ( )iBµ
l∇

~  which 

is the maximum relative effect of ith measurement errors of residuals having a ( ) ≥ivNµ ~ 0.5 membership value, 

is determined. 
 

( ) ( )ii VMjiA  µrµ ~~ ~=∇l ; ( ) ~max~
kiji rr =

                                                            
(7) 

( ) ( ) ( )ii vNmiB  µrµ ~~ 1−=∇l  ; ( ) ~max~
kimi rr =                                                    (8) 

 
The measurements that are immensely affected by the gross errors have maximum affect 

on the abnormal residuals whereas these have minimum affect on normal residuals. The minimum value 
of the membership function given in Equation (7) and Equation (8) shows the degree of il observations, 
where the minimum value is determined to be out of the limits. According to fuzzy set theory, 
the intersection of fuzzy sets A and B are composed of an H set. 

 
( ) ( ) ( )[ ]

iii BAH ,µµµ
lll ∇∇∇ = ~~~ min                                                                        (9) 

 
Defuzzification: To determine a significant limit critical value, the equations given below calculated 

by weighted average fuzzification method can be used. 
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Here P is weight matrix of the measurements. The obtained membership function ( )iH~µ

l∇  is compared 

with the CH value and if ( )iH~µ
l∇ >CH, then it is decided whether the values are out of limit, which means that 

they are in a different set, (Aliosmanoglu and Akyilmaz 2002).  
 

3. Result and discussion 
 
For this study, a geodetic network (Fig. 1) formed by The Directorate of Land Registry and Cadastre, 

was chosen. Both the European Datum-50 and ITRF96 (URL1) coordinate values of the 45 points 
of the network are known.  

 

 
 

Fig. 1.  The Network Selected for the Study. 
 
The network points were produced according to coordinates and vectors at a 1998.00 reference epoch 

of Turkish National GPS Network points. All the measurements were performed in June 2005 using GPS 
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receivers. Data reduction and post-processing were carried out using Leica LGO 2.0 software. Adjustment 
computation was performed accepting the coordinates of Turkish National GPS Network points as stable 
in the measurement epoch. Then, coordinates of points (X, Y, Z) were calculated using coordinated of points 
(φ, λ, h). 
 
3.1. Coordinate Transformation Methods  

Between the European Datum-50 and ITRF96 datum, the coordinate transformation parameters were 
estimated using Molodensky-Badekas models, and the significance of the calculated parameters was 
examined (Table 2). In the result of these tests, it was found (Z0) parameter was not statistically significant. 
After the examination, it was concluded that there might be an outlier in the data set and an outlier detection 
methods needs to be applied to the data set. 

 
Tab. 2.  Coordinate transformation parameters. 

 X0 Y0 Z0 εx εy εz κ 

Parameters -0.142 m. 0.228 m. -0.568 m. -20.936’’ 11.382’’ 2.929’’ 3.940 ppm 
Significance Test Valid Valid Invalid Valid Valid Valid Valid 
 
 
3.2. Outlier Detection 

Firstly, Conventional methods (Data-Snooping, Tau and t-test) were applied to detect outliers from 
the results obtained after the coordinate transformation was carried on the application network. The outliers 
were found and the results are shown in Table 3. Data-Snooping and t-test methods found the following 
outliers 501, 105, 100, 143, 148, 131, 302 101. In tau test, 503 point found as outlier additional these outliers. 
The iterative solution was estimated until a consistent measurement group was obtained. 

Then the Fuzzy Logic method was also applied to outlier detection using the results obtained after 
the coordinate transformation. The outliers found by the fuzzy logic method are shown in Table 4. 

Firstly, Fuzzy Logic method was determined the points of membership value owned in outlier group 
and the test value was calculated. Then, a comparison was made between the points of membership value 
and the test value. Here, eight points were determined to have membership values in outlier groups, three 
points were taken out of the outliers group due to having smaller membership values than the test value. 
The eight points yielded equivalent result to conventional methods. 

As a result, only 5 points were considered to be outlier in Fuzzy Logic methods.  
 

Tab. 3.  Outliers determined by conventional methods. 

Iteration  Data-Snooping Tau Test t-Test 
PN Test Value PN Test Value PN Test Value 

1 501 3.010 501 3.735 501 3.721 

2 105 4.589 105 3.505 105 3.492 

3 100 4.359 100 3.459 100 3.446 

4 143 4.062 143 3.346 143 3.333 

5 148 4.107 148 3.529 148 3.515 

6 131 4.047 131 3.655 131 3.640 

7 302 3.707 302 3.513 302 3.498 

8 101 3.908 101 3.871 101 3.854 

9 
Consistent 

503 2.651 
Consistent 10 Consistent 

 
 

Tab. 4.  Outlier measurement determined by Fuzzy Logic. 
PN Membership Value Test Value Result 
501 0.44310 0.10554 Outlier 
105 0.30923 0.10554 Outlier 
148 0.28541 0.10554 Outlier 
143 0.27012 0.10554 Outlier 
131 0.23053 0.10554 Outlier 
100 0.06271 0.10554 Consistent 
302 0.05076 0.10554 Consistent 
101 0.03808 0.10554 Consistent 
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4. Conclusion 
 
The coordinate transformation models Molodensky-Badekas models have been discussed theoretically. 

The method was statistically tested using a real case consisting of a triangulation network data set. 3D 
coordination transformation results were then used for outlier detection using two approaches, which were 
analyzed both theoretically and practically. The main observations for the three methods are given below; 

In conventional methods;  
• an iterative approach is used to reach a solution, 
• for each iteration only one outlier appeared and removed from data set, 
• the results of method are directly affected by the outliers, 
• outlier detection is carried out using residuals, a function of measurement errors and is not completely 

clear. 
 
In the Fuzzy Logic method; 

• results can be interpreted without any iteration operations, 
• outlier detection is carried out using a redundancy matrix which matrix is created in the solution 

estimated with LSM and the relationship between the residuals and the measurement errors. Thus 
the solution is clearer than the other methods, 

• a classification of outliers can be realized by using the membership value of measurements. 
 
As a result, if measurements group include errors as a coordinate transformation methods, these errors 

are taken into consideration. In the solution the method can be carried out by using as conditional adjustment 
with unknowns or total least square methods to determined measurements group errors. The outlier detection 
using residuals instead of measurements errors is uncertain. Therefore, in the solution the measurement errors 
must be used for the outlier detection. 

In this study, it can be seen that the solution of the conditional adjustment with unknowns is significant 
for 3D coordinate transformation and the Fuzzy Logic method is more applicable than the conventional 
methods. The further investigations should be focused on total least squares models for coordinate 
transformation and Artificial Intelligence techniques for outlier detection. 
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