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Development of methods for the processing of mining images
using genetic algorithms

Lačezar Ličev1, Marek Babiuch2, Tomáš Fabián3 and Radim Farana4

In this paper we describe the extension of system FOTOM capabilities with respect to segmentation of specific mining images.
We focus on methods that are inherently resistant against noise present in experimental pit at VSB Technical University. Here, we
describe procedures employing proven active contours and evolutionary algorithms for recognizing points of interest in the images
that may serve in determining various parameters and properties of analyzed objects. We use the evolutionary algorithms to optimize
the parameters of the gradient vector flow field and the parameters affecting the geometrical properties of closed curve used to
approximate the location and shape of object boundaries. We suppose that evolutionary algorithms can be used to find the desired
global solution. As the computation of gradient vector flow field and also the evolution of active contour are computationally very
expensive, we incorporate the GPU acceleration. In conclusion, we compare our approach with common numerical methods on real
industrial images segmentation.
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Introduction

In this contribution, our aim was to explain the analysis and evaluation processes, for objects of interest present
in mining images, and to assess the progress or regressions illustrated in these objects.

The FOTOM system developed at the Department of Computer Science FEECS VSB-TU Ostrava is used for
digital image processing and analysis. The system was originally designed to measure mine pits, but over time it
has expanded into a system with many modules offering detection and visualization of objects of interest especially
in medical images. The FOTOM system is useful in diagnosing and measuring of mining devices and providing 3D
modeling capabilities. This system also provides a simple solution for analyzing images obtained during specific
exams and time intervals, while assessing progression or regression between exams.

In addition, this article describes procedures that employ common principles and methods for recognizing regions
of interest in images that may serve in finding and determining the coordinates, shape properties and other valuable
parameters of analyzed objects. There exists an entire class of algorithms and methods for extracting segments with
certain parameters from rather specific class of mining images. The rest of the paper is organized as follows. The first
part briefly describes the architecture of the system FOTOM.The second part addresses some common mathematical
tools for image segmentation. In the third part, we focus on active contours. In the fourth part, we briefly describe
the optimization of active contour parameters by SOMA. The last section brings short conclusion. The contribution
follows the issues described at [1].

The architecture of the system FOTOM

System FOTOM contains many specialized modules for various kinds of measurements. The architecture of
FOTOM follows.

• 2D Fotom1 modeling module. Six types of objects of interest are proposed: points, borders, apexes, circles,
ovals, and polygons. These objects are defined in the pixel editing mode. Other forms of 2D modelling are
called "relative spinning" and "distance between objects".

• Measuring objects in a series of Fotom2 module images. In this module, the user performs a synthesis on several
images. This means that the user can observe all parameters of objects of interest with relevance to time (dates
or hours) produced by images. With this feature, the module can evaluate deviations from average and original
values while comparing two measurements.
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• 3D modelling in a series of Fotom3 module images. The FOTOM3 module is a full-value analytical tool that
enables 3D modelling of objects in 4 windows, graphic illustrations, 3D animation, 3D deviation modelling, and
many other functions.

• 2D Animation measuring process with the Fotom4 module. This module provides animated images and ani-
mated objects engaged in image measuring, regardless of whether they are transformed or not.

• Recognizing objects of interest and objects in the Fotom5 module (versions 5.1 and 5.2). This module enables
entirely new efficient solutions for recognition of points and objects of interest.

Image segmentation and objects of interest recognition

Image segmentation and indexing are the most important and most complicated steps in the entire procedure of
image analysis. The aim here is to divide an image into regions that are closely related to boundaries of captured real
objects. Thresholding is one of the most conventional and simplest segmentation methods, but it is still one of the
fastest. During the thresholding process, individual pixels in an image are marked as foreground pixels if their value
is greater than the given threshold value (assuming an object is brighter than its background). Unfortunately it is often
difficult to set the appropriate threshold value. Most methods for automatically determining thresholds presume that
the image histogram is either bimodal or multimodal. This means that they posses at least two clearly separated local
apexes. The Rosin method, first presented by Paul Rosin in [2], is very simple, yet effective, and works well with
unimodal histogram images. Another method which works good, especially with unimodal histograms, is the method
for determining thresholds using Tsallis entropy [3]. In the case of irregular brightness levels in various parts of the
image (e.g. due to irregular lighting) it is impossible to find one threshold level to correspond with all image parts.
To overcome this problem, we can use the method of thresholding with varying thresholds. The key to thresholding
with varying thresholds lies in splitting the original image into several smaller parts. The threshold of newly created
part is now calculated as the average of maximum and minimum brightness value in the given part. Resulting binary
(or indexed) images can be further processed by mathematical morphology operators like erosion and dilation [4].
Another useful operation is also thinning. The aim of thinning is to represent objects as linear forms. Thinning may
be executed with repeated erosion.

In an effort to recognizing objects of interest we can utilize neural networks as a recognition mechanism. The
most common types are three-layer networks and the back propagation algorithm is used to calculate the gradient
of the error of the network with respect to the network’s modifiable weights. Another type of neural networks are
competitive networks which are created with two-layer neural networks, where the lower layer represents input units
that are interconnected with all output layers, within which all neurons are again mutually interconnected. Each neuron
in the output layer is tacked onto itself (i.e. a self-existing link or inhibition link) and onto the other neurons, as well.
This method of interconnection strengthens the excited neuron that was most excited at the beginning of the process.
At the end of this process, the neuron is excited to the maximum, and the remaining neurons are totally suppressed
(this event is called lateral inhibition). Each neuron then represents an object, or a class of objects, from the input area.

Active contours

In the previous part we have described some common methods for image segmentation and recognition. Those
methods are well suited especially for unimodal or bimodal images with compact regions. In this section we will focus
on noisy images with multimodal histograms and spongy-like structure of regions of interest.

Active contours (known also as snakes) are parametric (or geometric) curves defined over an image domain and
their shape is governed by two types of forces. The first one, called internal force, comes from the curve itself and
restricts expansion and bending of the curve. The second one usually represents the edges in the analyzed image in
some way. Original version of active contours suffers from two main difficulties. The contour should be initialized
near the desired contour otherwise the process will converge to the wrong result. Many attempts address this issue
(e.g. pressure forces, distance potentials and multiresolutional methods) but problems still prevail. The basic idea is
to extend the capture range of the external force. The second problem is related to boundary concavities. And again,
although many solutions have been proposed (e.g. pressure forces, control points, domain-adaptivity, directional
attractions and solenoidal fields also known as an incompressible vector fields), none of them is satisfactory. In
[5] authors present a new class of external forces for active contour models called gradient vector field (GVF) that
addresses both problems. GVF is dense vector fields derived from images by minimizing certain energy functional in
a variational framework. The main advantage of GVF is large convergence area of initial contour and the ability to
move inside the boundary concavities.
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Lačezar Ličev et al.: Development of methods for the processing of mining images using genetic algorithms

The parametric curve x(s) = [x(s),y(s)],s ∈< 0,1) representing the contour is defined over the spatial domain of
the image I. The main goal is to minimize the following energy functional

E =
∫ 1

0

1
2
[α|x′(s)|2 +β |x′′(s)|2]+Eext(x(s))ds (1)

where α and β represents the weighting parameters that control the tension and rigidity of the curve. External energy
is represented by the function denoted Eext and can be computed in several ways. We use the following form, which is
suitable for most cases

Eext(x,y) =−|∇[Gσ (x,y)∗ I(x,y)]|2 (2)

where Gσ stands for two-dimensional Gaussian function with standard deviation σ and ∇ is the gradient operator.
During our experiments with GVF snake we have observed that proper selection of the parameter σ is essential for
successful segmentation. The convolution the image with Gaussian kernel also enables us to use this method for very
noisy image. A contour x that minimizes the energy functional must satisfy the Euler equation

αx′′(s)−βx′′ ′′(s)−∇Eext = 0 (3)

so that Fint = αx′′(s)−βx′′ ′′(s) prevents the curve from excessive stretching and bending and Fext =−∇Eext attracts
the curve to the edges in the image. As we want to find the solution to the Eq. 1, we threat the contour as a function of
time t yielding

xt(s, t) = αx′′(s, t)−βx′′ ′′(s, t)−∇Eext (4)

After discretization step, Eq. 2 represents the receipt how to iteratively find the solution of Eq. 1. Now we are still
missing the definition of external force Fext . According to [6] Fext = v(x,y), where v represents gradient vector flow
(GVF) field. After substituting the term ∇Eext in Eq. 2 by v we get the following equation

xt(s, t) = αx′′(s, t)−βx′′ ′′(s, t)+v(x(s)) (5)

The Eq. 3 can be also solved numerically by discretization and iteration like in the case of classic snake [6]. Finally
we need to evaluate the GVF field v(x,y) = [u(x,y),v(x,y)] that minimizes the energy functional

ε =
∫ ∫

µ(u2
x +u2

y + v2
x + v2

y)+ |∇ f |2|v−∇ f |2dxdy (6)

where f (x,y) =−Eext(x,y) is called edge map[5]. It is advisable to normalize the edge map prior further compu-
tations. With the aim of calculus of variation [7] and the following set of Euler equations

µ∇
2u− (u− fx)( f 2

x + fy2) = 0 (7)

µ∇
2u− (u− fx)( f 2

x + fy2) = 0

we can find the GVF field minimizing the functional from Eq. 4. Discretization and numerical implementation
of Eq. 5 is straight forward. Further details and conditions of convergence are discussed in more details in [5]. The
computation time is significantly larger for GVF than for the other traditional forces mentioned in the beginning of
this section. Thus we have implemented both parallel CPU and GPU version of algorithm for GVF computation. GPU
version was implemented using CUDA.

Experimental results are provided in Fig. 2 and Fig. 3 - left. We use artificial image of U-shape image with
superimposed noise. Initial contour shape was circular (Fig. 2 - right, largest outer circle) and the curve was iteratively
evolved into its final state corresponding with desired shape contour. Fig. 3 - left shows GVF field after 1.000.000
iterations computed with following parameters: smoothing Gaussian kernel width equals 11 pixels, µ = 0.01, α =
0.02, dt = 0.1, dx = 1, dy = 1. Result was obtained in 39 s for an 640 ×480 pixel image on NVIDIA GTX 460. In
case of CPU version, we obtain the same result in 107 minutes on 4-core Intel Xeon 3220 at 2.4 GHz. Using CUDA
we were able to achieve up to 160times speedups over CPU version.

We have also evaluated our implementation on numerous mining images (two of them are shown in Fig. 4. The
main problem was to reset the right values controlling the generation of GVF and the following curve evolution. In
Fig. 3 - right is example showing our attempt to extend 2D GVF to 3D space. Main difficulty related to active surface
is reparametrization of triangular mesh. Also the memory requirements, especially in case of high resolution images,
are significantly higher (e.g., roughly 1.3 GB in case of 200 × 512 × 512-voxel volume).
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Fig. 1. Left) Example of active contour evolution - noisy artificial test image. Right) Image shows iterations of snake evolution from initial
circular shape to final contour.

Fig. 2. Left) Images of corresponding GVF fields. Right) Example of 3D surface reconstruction from volumetric data.

Selected parameters optimization

To obtain the desired contour, we should investigate every possible combination of selected GVF field and con-
tour evolution parameters. We have selected 4 distinct parameters, namely α , β , µ and Gaussian kernel width. To
reduce the dimension of searched space, we constrain the center and the radius of initial circle to be constant. Those
parameters are forming 4-dimensional parameter space. Evolutionary algorithm (EA) is expected to find the minimal
contour energy function value in significantly lesser number of steps in comparison to the naive approach when the
user is responsible for setting the right parameters for every processed image.

To find the optimal values of selected parameters for active contour algorithm, we have used Self-Organizing
Migration Algorithm (SOMA) [8]. It is a member of the evolutionary algorithm class because of similar results
obtained with EA that are equivalent to the results from one generation derived by the classic EA except the fact that
there are no new individuals - offspring. It also behaves like Genetic Algorithms (GA) and Differential Evolution
(DE). Algorithm works with populations that are evolved in migration loops in which only the best suited individuals
will survive. SOMA is based on vector operation what makes this algorithm similar to DE and Particle Swarm
Optimization (PSO). The principles of SOMA can be described as follows. Each specimen is fully described by vector
of parameters. Each parameter is of certain type (e.g. real or integer) with some predefined upper and lower borders
representing the valid range of values. The population consists of many individuals and can be represented as an
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Fig. 3. Left) Images of corresponding GVF fields. Right) Image shows iterations of snake evolution from initial circular shape to final contour.

Fig. 4. Left) Example of real image Right) Image shows iterations of snake evolution from initial circular shape to final contour.

M × N matrix, where M stand for number of parameters and N represents number of individuals. Each individual
represents an estimate trying to minimize the cost function. The cost function is defined in such a way that if we get
closer to desired solution (in our case it is the desired shape of contour), the value of that function will decrease. We
define the cost function that penalizes the deviation of generated curve from the predefined reference contour. In the
ideal state when we get exactly the desired solution, value of the cost function will be minimal. It is clear that such
a function is multimodal and is difficult to find its global minimum. At the beginning of the evolutionary process we
randomly initialize each specimen of the population as follows in Tab 1.

Intrinsic parameters of SOMA algorithm were set according the guidance of [8]. After 805 migrations we were
able to obtain valid values of selected parameter for the example in Fig. 4.
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Tab. 1. Ranges of selected parameters representing each specimen.

Parameter Lower boundary upper boundary Step
α,β 0.01 0.10 -

µ 0.0001 0.100 -
G. kernel width 1 25 2

Conclusion

In this paper we have described our experience with mining image segmentation. We focused on active contour
algorithm based on GVF field for segmenting challenging images of various industrial parts. We implement the GPU
based version of the above mentioned algorithm and CUDA technology has proved its usefulness especially in the
demanding area of mining imaging. To accommodate the algorithm for using at area of mining engineering we use
the SOMA algorithm to automatically refine the parameters of GVF computation and active contour evolution part.
In the further development we would like to extend the number of those parameters (e.g. parameters of initial curve)
to handle wider range of images. The aforementioned methods and algorithms have been tested and proven at the
experimental pit at VSB Ostrava, Czech Republic.
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