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Piecewise-linear artificial neural networks for PID controller
tuning

Petr DoleZel' and Ivan Taufer?

A new algorithm of PID controller tuning is presented in this paper. It is well known that there have been introduced many
techniques for PID controller tuning, both theoretical and experimental ones. However, this algorithm is suitable especially for
highly nonlinear processes. It uses a model of the controlled process in the shape of piecewise-linear neural network which is
linearized continuously and resulting linearized model is used for PID controller online tuning. While at the beginning of the paper
the algorithm is described in theory, at the end there are mentioned some practical applications.
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Introduction

PID controller (which is an acronym to "proportional, integral and derivative") is a type of device used for process
control. As first practical use of PID controller dates to 1890s (Bennet 1993), PID controllers are spread widely in
various control applications till these days. In process control today, more than 95% of the control loops are PID type
(Astrom and Hagglund 1995). PID controllers have experienced many changes in technology, from mechanics and
pneumatics to microprocessors and computers. Especially microprocessors have influenced PID controllers applying
significantly. They have given possibilities to provide additional features like automatic tuning or continuous adapta-
tion - and continuous adaptation of PID controller via neural model of controlled system (which is considered to be
significantly nonlinear) is the aim of this contribution.

PID controllers

The basic structure of conventional feedback control using PID controller is shown in Fig. 1 (Astrom and Hag-
glund 1995)(Doyle et al. 1990). In this figure, the PLANT is the object to be controlled. The aim of the control is to
make controlled system output variable ygs follow the set-point r using the manipulated variable u changes. Variable e
is control error and is considered as PID controller input and ¢ is continuous time.
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Fig. 1. Conventional feedback control loop.

Continuous-time PID controller itself is defined by several different algorithms (Astrom and Hagglund 1995)(Doyle
et al. 1990). Let us use the common version defined by Eq. (1).

u(t) =K, (e(t)+71}/0t6(f)df+Tddz(;)> M

The control variable is a sum of three parts: proportional one, integral one and derivative one. The controller
parameters are proportional gain K, integral time 7; and derivative time 7. In applications, all three parameters have
to be tuned to solve certain problem most appropriately while both stability and quality of control performance are
satisfied. As microprocessors started to set widely in all branches of industry, discrete form of PID controller was
determined. Discrete PID controller computes output signal only at discrete time instants k7 (where T is sapling
interval and k is an integer). Thus, conventional control loop (Fig. 1) has to be upgraded with zero order hold (ZOH),
analogue-digital converter (A/D) and digital-analogue converter (D/A) - see Fig. 2 (kT is replaced by k for formal
simplification).
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Fig. 2. Discrete feedback control loop.

Formula of discrete PID controller can be obtained by discretizing of Eq. (1). From a purely numerical point of
view, integral part of controller can be approximated by sum of control errors and derivative part by difference of two
consecutive control errors - see Eq. (2).

k

u(k) = K, <e(k)+ze(i)+;(i_l)+Td(e(k)—e(k— 1))) 2)

T
U=

For practical application, incremental form of discrete controller is more suitable. Increment of manipulated
variable is defined by difference of two consecutive values. Using Eq. (2), we can express

u(k) —u(k—1) = qoe(k) + qre(k — 1) + gre(k —2) 3)

Parameters ¢qq ... ¢» depend on original values of K,,, T;, T; and sampling interval T'.

PID controller Tuning

The problem of PID controller tuning is solved often either using the Laplace Transform (continuous-time) or the
Z Transform (discrete-time) (Bracewell 2000). However, there are some experimental methods, e.g. Nichols-Ziegler
technique (Ziegler and Nichols 1942) which uses ultimate gain of proportional controller, or Cohen-Coon technique
(Cohen and Coon 1954) which uses step test of controlled process. For this contribution, polynomial approach of
discrete PID controller tuning is important. In the Z domain (Isermann 1991), discrete PID controller has the following
transfer function.

oz h _ Qo +qz ! +qaz?
P(z!) 1—z71

“4)

where z is complex variable. For a bit more complicated systems, discrete PID controller with integrated filter
(5) is sometimes used.

0@z ") _ qo+qiz ' +qz? )
Pz (I—-zH(1+7yz ")
Then, suppose Z domain conventional feedback control loop with discrete PID controller (4) and linear controlled
system described by numerator B(z ') and denominator A(z ') - see Fig. 3.
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Fig. 3. Feedback control loop with discrete PID controller in Z domain.

Z transfer function of closed loop in Fig. 3 is

(6)
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Denominator of Z transfer function (6) is the characteristic polynomial

Dz ) =A""HPE ) +BEz HoE ) (7)

It is well known that dynamics of the closed loop is defined by the characteristic polynomial (7) (Isermann 1991).
The polynomial has three tuneable variables which are PID controller parameters qo, g1, g2 (and ¥ for more complex
systems). The roots of the polynomial (7) are responsible for control dynamics and one can assign those roots (so
called poles) (see Fig. 4) by suitable tuning of the parameters qo, g1, g2-

Fig. 4. The effect of characteristic polynomial poles to the control dynamics.

Thus, discrete PID controller tuning using pole assignment means to choose desired control dynamics (desired
definition of characteristic polynomial) and to compute subsequently discrete PID controller parameters. The only
eligible parameter is polynomial D(z~!) (see Eq. 8) which is to be chosen. According to (Hunt 1993), there are four
ways to do it.

D(z )= 1+Zd,»z*" ®)

1. Dead beat is achieved

2. Quadratic criterion is satisfied

3. Control dynamics of closed loop equals to dynamics of defined second order system
4. Special dynamics of closed control loop (defined by customer) is achieved

Then, following Diophantine equation is to be solved.
1+ Y diz " =AHPE ") +B( o) 9)
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If any solution exists, it provides us expected set of controller parameters. Comprehensive foundation to pole
assignment technique is described in (Hunt 1993).

Continuous linearization using piecewise-linear artificial neural network

The tuning technique described in previous section requires linear model of controlled system in form of Z
transfer function. If controlled system is highly nonlinear process, linear model has to be updated continuously
(online) with operating point shifting. Except some classical techniques of continuous linearization (Gain Scheduling,
Recurrent Least Squares Method, ...), there has been introduced new technique (Dolezel et al. 2011), recently. It is
presented in next paragraphs.

Artificial neural network for approximation

According to Kolmogorov’s superposition theorem, any real continuous multidimensional function can be evalu-
ated by sum of real continuous one-dimensional functions (Hecht-Nielsen 1987). If the theorem is applied to artificial
neural network (ANN), it can be said that any real continuous multidimensional function can be approximated by
certain three-layered feedforward ANN with arbitrary precision. Topology of that ANN is depictured in Fig. 5. Input
layer brings external inputs xy, X2, ..., xp into ANN. Hidden layer contains S neurons, which process sums of weighted
inputs using continuous, bounded and monotonic activation function. Output layer contains one neuron, which pro-
cesses sum of weighted outputs from hidden neurons. Its activation function has to be continuous and monotonic.

Output layer

layer
Fig. 5. Three-layered ANN.

So ANN in Fig. 5 takes P inputs, which are processed by S neurons in hidden layer and then by one output
neuron. Dataflow between input i and hidden neuron j is gained by weight w! ji- Dataflow between hidden neuron j

and output neuron is gained by weight wzl_y ;- Output of the network can be expressed by following equations.

P
vai= Zwlj,,. x,-+w1j (10)
i=1
Yi=0'(v)) (11
2 S 1 1 2
Yor= Y wh v+ wh (12)
j=1
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y=0> (1) (13)

In equations above, ¢! (.) means activation functions of hidden neurons and ¢(.) means output neuron activation
function. The network should be well trained to achieve sufficient approximation qualities. In other words, the
network is to learn associations between a specified set of input-output pairs (training set). As there were presented
many training techniques from simple Back-propagation Algorithm (Rumelhart et al. 1986)(Haykin 1999) to some
specialized hybrid techniques using evolutionary algorithms (Montana and Davis 1989), they are not defined here.

System identification by ANN

System identification means especially a procedure which leads to dynamic model of the system. ANN is used
widely in system identification because of its outstanding approximation qualities. There are several ways to use
ANN for system identification. One of them assumes that the system to be identified (with input u and output yy) is
determined by the following nonlinear discrete-time difference equation.

ys(k) = ylys(k—1),..ys(k—n),u(k —1),u(k —m)] (14)

In equation (14), w(.) is nonlinear function, k is discrete time (formally better would be kT') and # is difference
equation order. The aim of the identification is to design ANN which approximates nonlinear function y(.). Then,
neural model can be expressed by Eq. (15).

ym (k) =¥ ymk—1),..ym(k—n),ulk—1),u(k —m)] (15)

 represents well trained ANN and yjy is its output. Formal diagram of neural model is shown in Fig. 6. It is
obvious that ANN in Fig. 6 has to be trained to provide yy, as close to ys as possible. Existence of such a neural net-
work is guaranteed by Kolmogorov’s superposition theorem and the whole modelling procedure has been extensively
discussed in (Haykin 1999) or (Nguyen et al. 2003), so it is not dealt with here.

u(k)[

Fig. 6. Formal diagram of neural model.

Piecewise-linear neural model for discrete PID controller tuning

As mentioned in section above, there are some conditions to be held, so that ANN acquires universal approxima-
tion qualities. Above all, continuous, bounded and monotonic activation function should be used in hidden neurons,
continuous and monotonic activation function then in output neuron. To satisfy those conditions, there is used mostly
hyperbolic tangent activation function (16) for neurons in hidden layer and identical activation function (17) for output
neuron.

v'; = tanh (y,';) (16)
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y=v2 (17)

However, if linear saturated activation function (18) is used instead, ANN features stay similar because of resem-
bling courses of both activation functions (see Fig. 7).

1 for yalj>l
Yi=q v, for —1<y/}; <1 (18)
—1  for Ve <1

—_

Hyperbolic tangent R

"""" Linear saturated function

Fig. 7. Activation functions comparison.

The output of linear saturated activation function is either constant or equal to input so neural model which uses
ANN with linear saturated activation functions in hidden neurons acts as piecewise-linear model. One linear submodel
turns to another when any hidden neuron becomes saturated or becomes not saturated. Let us presume an existence
of a dynamical neural model which uses ANN with linear saturated activation functions in hidden neurons and identic
activation function in output neuron - see Fig. 8.

ANN output can be computed using Eqs. (10) - (13). However, another way for ANN output computing is useful.
Let us define saturation vector V of S elements. This vector indicates saturation states of hidden neurons - see Eq. (19).

1 for yljzl
vi={ 0 for —1<yli<1 19)
-1 for ylj:—l

Now, ANN output can be expressed by

yu(k) ==Y apyulk—j)+ Y bju(k—j)+c (20)
Jj=1 j=1

where

S
aj:_ZW21,5(1—|Vi|)Wliﬁj 2D
i=1

wh (1= [vi[)w' (22)

)

o

—_

bj= ij+n
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Fig. 8. Piecewise-linear neural model.

S
c= w21 + Z (wzlyl»v,' +(1- |v,'|)w217,»w1i) (23)
i=1

Thus, difference equation (20) defines ANN output and it is linear in some neighbourhood of actual state (in that
neighbourhood, where saturation vector V stays constant).

In other words, if the neural model of any nonlinear system in form of Fig. 8 is designed, then it is simple to
determine parameters of linear difference equation which approximates system behaviour in some neighbourhood of
actual state. This difference equation can be used then to the actual control action setting due to many of classical or
modern control techniques.

In following examples, discrete PID controller with parameters tuned according to algorithm introduced in para-
graph 3 is studied. As it is mentioned above, controlled system discrete model in form of Z transfer function is
required. So first, difference equation (20) should be transformed in following way. Let us define

(k) = u(k) —uop (24)

where ug is constant. Then, Eq. (20) turns into

3

n m
ym(k) ==Y ajyu(k—j)+ Y bjilk—j)+c+uo Y b, (25)
j=1 j=1 j=1

Equation (25) becomes constant term free, if Eq. (26) is satisfied.

c
wo = ——C— (26)
Zj:l bj

In Z domain, model (25) witch respect to Eq. (26) is defined by Z transfer function

Yu(z™) Mybjzd

U(zh) - 1+Y7 a2 @7)
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Algorithm of discrete PID controller tuning using piecewise-linear neural network

Whole algorithm of piecewise-linear neural model usage in PID controller parameters tuning is summarized in
following terms (see Fig. 9, too).

1. Create neural model of controlled plant in form of Fig. 8

Determine polynomial D(z~!)

N

. Setk=0
. Measure system output ys(k)
Determine the parameters a;, b; and ¢ of difference equation (20)

. Transform Eq. (20) into Z transfer function (27)

. Determine discrete PID controller parameters by solving of Eq. (9) where A(z~!) and B(z~!) are denominator
and nominator of Z transfer function (27), respectively

0

. Determine #i(k) using discrete PID controller tuned in previous step
9. Transform (k) into u(k) using Eq. (24) and perform control action

10. k=k+1,goto4

@b br NEURAL MODEL
y A A AA P A
D(z") POLE < g g g
ASSIGNMENT Bl e
DELAY DELAY
k 4 | S
DN s(k)
T DISCRETE PID u(k) | NONLINEAR »b
\ CONTROLLER g SYSTEM g
AN
E N

Fig. 9. Control algorithm diagram for second order nonlinear system (m = n = 2).

Case study

The algorithm introduced above is applied now to control of simulated nonlinear system compiled by a combina-
tion of nonlinear static part and linear dynamical system - see Fig. 10.

NONLINEAR . LINEAR
STATIC Y0, DYMANIC
ELEMENT ELEMENT

u(f) s

A 4

Fig. 10. System to be controlled.
The static element is defined by Eq. (28), while the dynamic system by (29).

u* = tanh(u®) (28)
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dy() d?y(7)
t - 7
ys(t)+5 s +50 a2

— (1) (29)

Graphic characteristics of the system are shown in Fig. 11.
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Fig. 11. Graphic characteristics of the system.

System input is limited to an interval u €< —1;1 >. Control loop is designed as shown in paragraph 5. At first,
dynamical piecewise-linear neural model in shape of Fig. 8. is created. This procedure involves training and testing
set acquisition, neural network training and pruning and neural model validating. As this sequence of processes is

illustrated closely in many other publications (Nguyen et al. 2003)(Haykin 1999), it is not referred here.

Next step is to decide polynomial D(z~!). In this example, two second order systems (one conservative, the other
more aggressive one) are defined as standards for closed loop dynamics to determine polynomial D(z~!). In other

words, the point is to force some defined performance to the closed loop - Fig. 12.
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Fig. 12. Desired dynamics of the closed loop.

However, actual control responses are a little different (especially the aggressive one) - see Fig. 13. The aggres-
sive response follows set point similarly to the conservative one and it involves some oscillations, in addition. The
differences are caused by not ideally precise neural model, system input boundaries and mainly by simple fact, that
one cannot expect to force such a smooth dynamics to complex nonlinear oscillative system. In other words, standard

dynamics defined by polynomial D(z~") should be feasible considering complexity of controlled system.
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Fig. 13. Control responses.

Conclusion

The new algorithm of PID controller online tuning is introduced and theoretically described in the paper. It is suit-
able especially for highly nonlinear processes control, as it is shown in case study. The algorithm uses piecewise-linear
neural model as plant model, which is great advantage, because the linearization of such a model is not computationally
demanding. Thus, linearization and controller parameters adaptation can be easily performed every time sample.
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