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Analysis of a simulation of missing satellite observations
in the deformation network

Slavomir Labant! and Gabriel Weiss®

The present paper covers the issue of missing measurement data between two or more actually located epochs within a deformation
network. Real measurements were attained from experimental locating of the 3D geodetic deformation network applying the global
navigation satellite system (GNSS) to the points around the upper reservoir of water transfer power station Cierny Vih. Contrary
to the other terrestrial technologies, the advantage of using GNSS is seen in the fact that the technology is not influenced by uncertainties
of low-level layers of atmosphere and individual visibilities between points falling within the screened area are unnecessary.
In the process of resolving, simulated and subsequently generated were missing observation data between two epochs. Simulation
intermediate results were subsequently analysed, graphically illustrated and verified was at what time point the shift of an unstable point
occurred.
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Introduction

Time series analysis presents one of the most significant applications of statistical methods in various
branches. If some data are missing in an empirical time series they can be replaced by empirical data
simulation. Simulation of the missing empirical data is then subjected to the time series analysis. The modelled
time series is verified by regression and correlation analysis with the possibility of subsequent prognoses
of the time series further development.

Time series (TS) is a sequence of materially and spatially comparable data, positively from the point
of time arranged in the past —to— present TS {x[,t[ }n. TS is minimally two-dimensional (planar) selection
of data, in which a random variable is explicitly bound to time and/or constitutes with the time in which
it emerged an inseparable pair (triplet, etc.). TS present, in majority, waveforms of working quantities of a host
of technologies: seismic, geophysical, biological, meteorological records, records on pollution of soil, water,
air, demographical data, etc. Hence, the TS analysis is a set of methods applied to describing past behaviour
of the TS, possibly for forecasting its future behaviour.

Selection of processing space

Provided that the only factor of dynamics is time, the principal one-dimensional TS model can be entered
as a function of the modelled indicator in the form of

y=r@1), (1)
where: /, is value of the random component in time ¢ =1,2,...,n . Its modelling can be approached by applying

the traditional (formal) model, the Box-Jenkins methodology or spectral analysis.
With multi-dimensional models it is anticipated that development of the indicator being observed does not
influence only the time factor but other factors as well x;,x,,...,x, . Such a multi-dimensional model [5] can be

entered in the form
Ve = f(t,x1,X500X,,1,). 2)

The Box-Jenkins methodology has the random constituent that can be made up of dependent random
quantities for the TS model construing. Modelling of TS using the spectral analysis utilises Fourier series.

The time series traditional model is based on breakdown of the time series to four components:
T, - Trend — long-term tendency, changes in average behaviour of the TS,
C, -Cyclic —around the trend fluctuations with varying lengths of cycle, with varying speed of changes
within the rise and fall phases of TS values,
S, - Seasonal — periodic component, regularly reoccurring within a specific season (cycles),
I, -Random (irregular), which remains in the time series even once 7,, C, and S, components have been

removed; made up of random influences; has no observable nature.
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The model shape can be:
Additive: Y, =T, +C, +S,+1, -most frequently used in the practice, 3)

Multiplicative: Y, =7,-C,-S§,-1,, (logY, =logT, +logC, +1logS, +logl,), “)
where Y, - are expected, theoretical values of (dependent variable Y ) TS.

The purpose of TS decomposition is to estimate the basic TS trend and to foretell the TS data by at least
a single time step into the future. [2].

The trend component analysis

Purpose of the TS analysis is seen especially in the tendency of its, i.e. of the trend component, analysis.

The TS trend component can be obtained by various means, especially by:

e simple diagrammatic (subjective) methods such as balancing of fluctuations, method of cycles averaging,
sum of the areas of triangles method,

e analytical formulation of the trend using trend functions — the entire time series is equalised at once,
by a single function,

e adaptive approaches — equalisation materializes gradually along shorter periods, e.g. using exponential
smoothing, the moving averages method, etc.

Analytic expression of the trend using trend functions

In the practice most frequently used trend functions for both analysis and prognosis of time series are for
example: linear, parabolic (Tab. 1), exponential, logistic trend etc.. The most often method of estimating
the trend function parameters is the least squares method (LSM), which can be utilised in case that the selected
trend function is linear at its parameters. Its advantage is simplicity and minimising of the residual component
variance. It is directly appropriate for both linear and parabolic functions. In case of the exponential function
this has to be linearized so that it would become linear from the point of parameters. [8]

Tab. 1. Analytic expression of the trend using trend functions:

For constant trend it holds that: For linear trend it holds that: For quadratic trend it holds that:
Tr,=ay=y, t=12,.,n, Try=ayg+ayt, t=12,..,n, Gf Y142 =241+ ¥ + const.)
ay,a; - calculation as at LRM T, =ay +ayt+ a2[2, t=12,..,n,

ay,ay,a, - calculation of the 2nd degree polynomial

Forecast: Y7 =a, Forecast: Y =ay+a T Forecast: Yy =ag +a;T + a2T2

v v v

The appropriate trend function type can be selected based on the time series past development analysis
applying the interpolation criteria:

e  Factual/subject analysis of the examined phenomenon — if it is an increasing or decreasing function,
if there is an inflection point or if in concern is an infinitely increasing function, an infinitely decreasing
function, etc.

e Time series diagram analysis — danger of visual selection dwells in its subjectivity, whilst the diagram
shape is extremely dependant on the scale used.

e  Calculation of values of the trend function “success rates” — minimal sum of squares of residua, etc..

e  Fisher characteristics of adequacy.

e  Analysis of the time series differences. [6].

TS modelling methods are based on the “future follows from the past” principle (in relatively stable
environments), and thus are suitable also for forecasting, predicting, prognoses — data extrapolation:
e  Forecast — from the TS historical data calculated (objective) datum for the subsequent, future time step,
usually derived from a short time series.
e  Prediction — from historical data of an appropriately long TS estimated datum for the next time step.
e  Prognosis — from long-term TS historical data estimated datum for a distant time horizon.
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Quality TS extrapolation (forecast, prediction, prognosis) depends heavily on its type, and it seems
to be most appropriate to utilise extrapolation criteria. Simulation rests in that separated from the analysed
TS are several final values, calculated from the rest of them is the trend and its appropriateness is assessed
based on how well it manages to extrapolate the unused part of the series. Suitable for extrapolating are only
some 50 — 60 % of models [6]. Inequality coefficients most often present the rate of the model prognostic
quality.

Adaptive approaches to expressing the TS trend component

Available are two concepts, namely the moving averages method and exponential smoothing.

Exponential smoothing or degradation of historical data decreases weights of outdated data in a specific
time interval. “Fresher values will be of more profound impact upon the analysed TS future development than
“older” values. It seems to be highly appropriate to introduce weights that will be inversely related
to the observation “age”. At exponential smoothing, the weights present exponential function of their ageing.
[2].

The moving averages method resides in that that sequence of the original empirical observation
is replaced by a series of moving averages. Most frequently used is moving average of 5, 7 or 9 values
(at times also more), whereas with odd number of values the calculated moving average can be assigned
directly to the middle member of contemplated values.

Under the assumption that appropriate to apply on moving part of a balanced time series is the linear
trend, calculated are simple moving averages

_ 1 2 Vit Vipgtooty
V= zyzﬂ‘ ==L LL nL 5 ©)
mi-_p

m

if it is more appropriate to use the parabolic trend, calculated are weighted moving averages in the form
of

Fo= S Y W= g W SW=L W =W ©)
gi=—p i=p
Used then are the following systems of weights W, for:
e  Five-member weighted moving average (-2,3,6,3,-2)/8, @)
e  Seven-member weighted moving average.. (-2,3,6,7,6,3,-2)/21, ®)
e  Nine-member weighted moving average (-21,14,39,54,59,54,39,14,-21)/231. )

The subjective problem that stays when calculating moving averages is the series. Most frequently opted
for are averages of the lowest series. Shown in Tab. 2 are forecasting moving averages — for the case that
calculated is being the anticipated value for a single forward time step. [8] [9]

Tab. 2. Weights of forecasting moving averages.

Number of TS values Forecasting weights- 1st series Forecasting weights- 2nd series
3 (-2,1,4)/3
5 (—4,-1,2,5,8)/10 (3,-3,-4,0,9)/5
7 (-2,-1,0,1,2,3,4)/7 3,-1,-3,-3,-1,3,9)/7
9 (-8,-5-2,1,4,7,10,13,16)/36 (14,0,-9,-13,-12,-6,5,21,42)/ 42
11 (-10,-7,-4,-1,2,5,8,11,14,17,20) /55 (45,9,-17,-33,-39,-35,-21,3,37,81,135) /165

Regression and correlation analysis

In scientific studies, quantitatively are often evaluated two or more quantities expressed by functional
relations for 2D: y = f(x), or for 3D: z=g(x,y) etc. Regression analysis deals with determining the type
of relation among investigated correlated (dependent) variables. Correlation analysis, on the other hand,
involves determining strength (tightness) of the relation amongst variables. Examined variables are empirical
values x;, y; and the equalising curve y= f(x) is continuous, and passes among points of the empiric
polygon. Distances between points and the curve y = f(x) present residua (regression errors) &;. Result

of the regression analysis if functional dependency between variables x;, y; characterised by the equalising

curve optimally approximated to the empirical polygon [1]. Thus, in concern is selection of an appropriate
regression model type, and subsequently calculation of the best estimate of its parameters. Utilised for
the purpose are multiple methods, the most universal one of them being the LSM, result of which
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is the so-called regression curve. The overall result will be a series of paired values that are taken for
the measurement of a 2D quantity. At the regression analysis values of one variable are taken for
the measurement of continuous random value y for given values of the other variable x. Linear regression

can be thus defined as evaluation of quantitative relations by the use of linear function.
Linear regression model - LRM

Empirical polygon (point diagram) of values x;, y; shows the tendency of direct dependency, and hence

can be described by the 1st degree polynomial (straight line). The straight line represents an abscissa whereas
its validity is restricted by the branch of values being processed x; and y;.

Relation between x; and y, can be “bidirectional”, i.e. trend value f’l may be dependant on x; and/or

trend value X ; may be dependant on y,. Calculation of parameters a;,a,, and b;,b, , respectively, as the so-
called their best estimates by use of the LSM is based on the pertinent shape of the target function:

Type .Y, onx: Y =d,+ax, Type ,X,ony“: )A(:l;0+l;1y,

a R h N
L =a=(XTX0)M(xTy), Pol=p= ¥, (10)
a, b,
I x N Ly X
1 x 1 X
where X = . :2 L,y = y:2 , where Y = : y:2 X = :2 . (11)
I x, Y Ly, X,
Appropriateness of compensations of values x;, y; using the LRM is determined based on the correlation
characteristic:
: 2 2 13 —\2 2138 -2
e overall variance s, : ), =;§(yi -y, S5 =;§(xl- -Xx)°, (12)
: : 2 2 1 ¢ 5.2 2 1 ¢ 52
* residual variance s, s}, = (-1, Syy = 2(x = X)), (13)
n—2i=l n—2i=1
. . 2.2_1n" —\2 T _ = 2_1” ~ —\2 v _ =
e theoretical variance sy, : sy =—2(Y;-»)", at Y =y, sy =—2(X;,—-X)", at X =X. (14)
ni=l ni=l

Approximately holding for appropriateness of by LRM processed data is the variance equation:

2 o2 2
Sove = Sres +Sthe (15)

Evaluation of the regression model quality (functional dependence = 1, functional independence = 0):

2
Determination index: [ fy = Stze" ; (16)
Scel
52
Fisher’s adequacy characteristics: F,; = ‘;’ , (sfes should be as small as possible) 17
SV@Z
n p— p—
_Z(xi -x)(; =)
Pearson’s correlation coefficient: r==—— (18)

ns,s,
whilst if 7 > 0(< 0) the relation is positive (negative).

The LRM of both types constitute so/called pooled regression models, and together they form so-called
correlation scissors. The more the scissors are “open” the smaller is r, and the functional dependence is lower,
and vice versa. If r==1, the more functional the statistical significance becomes. Considered for proper

regression model is if |r| >0,7 (0,8).[2]
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Nonlinear regression models — NLRM

Not always is selection of proper NLRM types easy. At times, nonlinear regression model can
be by introducing functional relations among regression coefficients transformed into a linear model. The most
frequently used types are: polynomial (up to 4-5 degree), power (potential), exponential, hyperbolic, logistic
types, etc.. At selecting the most appropriate NLRM type form amongst the recalculated possible ones
it is most appropriate to adhere to minimal sum of orders of evaluations (at identical overall variance) [1]:

e  minimal residual variance, e  max correlation index value,
e  minimal theoretical variance, e  min number of specified parameters, etc..

Experimental deformation network surveying and evaluation of the GNSS signals

Experimental surveying was performed in the deformation network (DN) located in the vicinity
of the upper reservoir of water transfer power station (WTPS) Cierny Véh, in the area of the Low Tatras
National Park. Performed in the locality were observations using the GNSS technology and by static method
using single-band GPS Sokkia Stratus receivers. [4]

Terrestrial measurements cannot be performed whereas high forest cover precludes visibility between
pairs of the network points. By the manufacturer stated precision for the static method of GNSS technology

isin position of Smm+1-D;ppm and elevation 10 mm+1-D;ppm . Observations of DM consisting

of 7 points were performed in 4/2004 and 7/2008, respectively, with sufficient time interval (

Fig 1). Used in course of performing observations was the static method of determining position of all
points of the network (5001 to 5007). Point 5001 was selected as the reference point of the network, whereas it
was stabilised in the terrain of maximum size and flatness. The network was made up using 11 vectors (Fig. 1).
Signals were in individual points of the network received within the time interval of 1 to 7 hours (7 hours —
reference point 5001).

Originally, the observed data were treated by
post-processing in the software environment of
Spectrum Survey, in the geocentric WGS-84 system
of coordinates. The results were geographical
coordinates ¢, A and elevations /2 of individual

network points. Imported into the Trimble
Geomatic Office software for the post-processing
adjustment of the network were observations files in
the RINEX 2.11 format from two reference stations !
SKPOS (SKLM and GANP). RINEX files provided water area
for change of the system of coordinates in ETRS- ;
89, which accounts for movement of the Eurasian
lithospheric plate, and hence also shift in relation to
coordinate axes of the WGS-84 system.

Used for processing was the Gauss-Markov
model of full rank. Epochs 2004 and 2008 were
adjusted both separately and applying bivariate
methods using various weights [7]:

1. According to recommendation of the

technology manufacturer: Smm+1-D;; ppm ,

WTPS Cierny Vah

Fig. 1. Structure of 3D network in the location WTPS Cierny Vih.
2. Seeding the covariance matrix from Spectrum

Survey, where sé =RMS ,

3. Seeding the covariance matrix from Spectrum Survey, where sg =1,
Weights of observations were estimated using the MINQUE method.

From the point of standard deviations, the most precise proved to be the solution using covariance
matrices from the Spectrum Survey. With the MINQUE method [3], the weights were estimated based
on by the manufacturer recommended precision, whilst numeric results of processing proved that applying
of MINQUE method was an adequate substitute of laborious inputting of covariance matrices from
the Spectrum Survey.

At investigating variations between epochs there are several millimetre differences in estimates
of adjusted coordinates of points when different measurement weights are used. Yet, all of the processing
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performed pointed to a shift of point 5005 (coordinates differences of the point 5005: 1. 25,18 mm,
2. 25,59 mm, 25,59 mm, 4. 24,95 mm - from adjust with using various weights). Revealed differences at other
points were due to accumulation of measurement errors.

Real time simulation

Real time simulation presents investigating movement of a point between epochs 4/2004 and 7/2008.
Observations that were between the epochs missing were obtained by simulation in the MATLAB software

environment. At processing GNSS observations and testing of the deformation vector AC="2008C_4/12004¢

of network it was established that a fluctuation in point 5005 occurred between epochs 2004 and 2008. That is
why was the point selected for more in detail examination using simulation. The purpose of simulation
is to find out in which epoch could the methods used record movement of the point for the first time and to
illustrate how was the point moving during the monitoring period.

52 months passed between epochs 4/2004 and 7/2008, respectively, when were observations
of the network performed. Chosen according to the number of months was also the number of simulated
observations between the two epochs, i.e. the simulation consisted of 52 observations. The number was opted
for so that met was the condition of a wide selection numerosity, where n >30, and that the simulation
graphical presentation was sufficiently transparent along all axes of coordinates, planes and in the 3D space.

The prerequisite of a successful simulation is that movement of point 5005 is in space straightforward,
regular, and that during the observation period the point would move from *2°%45005 « to point «”/2°®®5005
“. To simulate real time it proved to be necessary to obtain the observation vector that is loaded with random
errors that continuously influence each of the measurements.

Simulation of the observation vector loaded with random errors

Simulation of real observations resides in loading by random errors that cannot be by any means
eliminated. Random error A; is the error that at an identical measured quantity, method, measurement

conditions and thoroughness of measurement randomly attains various quantities and signs. Mean value
of the principal set of random errors with normal distribution is E(A)=0. Random (stochastic) errors are

in the process of measuring occurring spontaneously, individually, and are not subject to any natural relations.

Their properties are established based on empirically Tab. 3 Vector of real and simulated observations

established qualities of random errors: Observation L L dL
o .. . vector [m] [m] [mm]

. probablhty qf occurrence of a positive or negative AX 38,650 | -38.6489 1
error is identical, o [ AY 210806 | 2108047 | 13

e small errors are more probable than major errors; AZ 78,159 | 78,1651 -6,1
probability of the error occurrence is a function of | sq0; AX 1.7205,608 | -205,6094 14
oy mion | o

e errors that exceed certain limit are taken for gross AX 379,841 379.8493 83
errors, and no errors are occurring beyond certain 288‘11 AY 10,425 10,4215 3,5
boundary. [1]. AZ 287,820 287,8214 -4
005 | g | iaios |67

Used during simulating random errors | 5005 i 5 2: T3 02: 124 - 5” i

in the observation vector */20%[ (L from epoch 4/2004) 5001 AX -285,825 | -285,8286 3,6
performed in MatLab environment was the “normrnd* | 5,0 AY 405,734 | 405,7339 0,1
command, which out of the input data (observations) AZ 110219 | 110219 0.0
generates input observations of the subsequent epoch that | 5001 i§ S'g; ’8754 50 ;Z;;’glf 1220
are loaded with normally distributed random errors. The | 5007 A7 095332 | 953333 13
input data can be a scalar, vector (our case) or a matrix. AX 166,978 | -166,9863 8.3
Value of the random error is influenced by standard gggg AY 23,200 | -23,2051 5,1
deviation the size of which is defined. The input data are AZ 105,385 | 105,3862 1.2
the observation vector */?°™L and the standard deviation | 5003 iz(( 127:41}33 1211212233 ?;
o[m]. Used at simulating was the standard deviation that 5004 AZ 104,319 | 1043143 4,7
had been specified by the manufacturer to be of o =5mm. 5004 AX 31,984 | -31,5899 2.2
AY 60,983 | 60,9779 5,1

Input vector 4120047 and by errors loaded simulated vector 5005 AZ 14,281 14,2790 2,0
from epoch 3120047 (the 1st simulated epoch) are shown in | 5005 ax 122,989, 1 125.5899 02
AY 334,316 334,3154 0,6

Tab. 3. 5006 AZ -191,873 | -191,8677 -5,3
Simulated observation vector °'**™L was used 5006 AX 211,088 | 211,0868 1,2

in bivariate adjustment of the network in epoch 5/2004. | 5007 AY 103,129 | 103,1214 7,6
AZ -205,581 | -205,5810 0,0

Whereas the shift occurred at point 5005, investigated
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coordinated of the point were gradually depicted as scattered charts in the directions of axes X,Y and Z,
which resulted in three time series (Fig. 2). Each chart contains the output of actual testing. If the deformation

vector dC test for point 5005 demonstrated movement of the point, position of the point is plotted in the chart
as a red asterisk, and in the contrary case as a blue dot.

Decomposition of time series was confirmed by simulation of straightforward movement of point 5005
between epochs 4/2004 and 7/2008. LSM presents the most frequently method of estimating parameters of
trend functions, and the method is applicable in case that the selected trend function is linear in its parameters.
Satisfactory for the given time series are linear trends for which it holds that 7r, =a, +ait, t=12,.n.

Verification of the TS trend proved that the given trend has high “rate of success” of the trend function, i.e.
minimal sum of squares of the residues (min square error of the estimate). Plotted for graphical illustration of
the observation vector loaded with the random error that reflects effect of random errors of the £5 mm interval
were the charts of residues illustrated in Fig. 3.
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Fig. 2. Illustration of the simulation along individual coordinate axes.
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Fig. 3. Charts of residues in individual coordinate axes.

By using the moving averages method elaborated was a forecast of the following position of the point
in the future. Used for 3, 7, 11 values of the time series from Tab. 1 were the 1st order forecast weights.
A breakdown of forecasts is shown in Tab. 4.

Tab. 4 Summary of the time series forecast
Point coordinates 5005

The 1st order forecast

weights according to:

X [3 940 69+, ss5x m]

Y [1 427 30%,5 %% m]

Z [4 793 20%, %% m]

3 values of TS 0,5998 4,2182 8,5697
7 values of TS 0,5945 4,2245 8,5711
11 values of TS 0,5943 4,2250 8,5675
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According to the number of presumed values illustrated in the graphs (Fig. 4) are forecasts of: three
numbers - green A, seven numbers - pink 0 and eleven numbers - black ¢ . Demonstrated in Fig. 4 are details
from Fig. 2 in the order from left to right: axis X , axis ¥ and axis Z .

a) axis X

b) axis Y
Fig. 4. Forecasted next position of point 5005 for individual axes.

¢) axis Z
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The forecast that most closely reflects linear trend of simulation also most closely corresponds with
the forecast of 7 and 11 TS values.

Examined was also mutual correlation between coordinates of point 5005. In the YZ plane, where
the tests certify the most profound movement, also the correlation is highest. In the other two cases are
correlation scissors slightly opening, which point to a lower level of correlation (Fig. 5). Tests of the 1D

deformation vector dC confirm shift of point 5005, whilst there was no movement evident along axis X .
Hence, the trend of movement of point 5005 along axis X is not the same as is the case along axes Y and Z,

where the shift is comparable. Shift of point 5005 can be demonstrated by statistical processing already from
the 25th simulation epoch (Fig. 2, Fig. 5).

4.235 858 8,58

0.59
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Fig. 5. Correlation of individual constituents of movement of point 5005 in simulation.

3D visualisation of point 5005 (Fig. 6)
in both epochs with absolute confidence 857 —
ellipsoids and positions of points 5005 from
individual simulation epochs during the
observation period (52 months). e

Conclusion 856

Deformation analysis demonstrated in
the period of 2004 to 2008 travel of point
5005, and this was used for further
analysing using simulations. Missing
observations were obtained via simulation in
MatLab programming environment.
Anticipated was even straightforward shift, 8545~
whilst observations were loaded with
random errors. In between epochs 2004 and
2008, gradually determined were 52 g g
positions of the point. ! 4215?%\(/}% -

Examined by use of time series were Y a0 0O
the time points when the methods Y - ETRS-89
commenced to demonstrate shifts of the Fig. 6. Graphical visualisation of point 5005 point movements
point, which provided the possibility to since epoch 4/2004 till epoch 7/2008.
forecast the following point position. Simulation results proved that usage of time series was appropriate for
determining movement of the point among epochs, and in addition they demonstrated relevance of the real-
time measurement for early revealing of deformations and timely commencement of remedial activities.

8.555 —|

Z - ETRS-89

8.55 —

X - ETRS-89
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