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Analysis of a simulation of missing satellite observations 

in the deformation network 
 
 

Slavomír Labant1 and Gabriel Weiss1 
 
 

The present paper covers the issue of missing measurement data between two or more actually located epochs within a deformation 
network. Real measurements were attained from experimental locating of the 3D geodetic deformation network applying the global 
navigation satellite system  (GNSS) to the points around the upper reservoir of water transfer power station Čierny Váh. Contrary 
to the other terrestrial technologies, the advantage of using GNSS is seen in the fact that the technology is not influenced by uncertainties 
of low-level layers of atmosphere and individual visibilities between points falling within the screened area are unnecessary. 
In the process of resolving, simulated and subsequently generated were missing observation data between two epochs. Simulation 
intermediate results were subsequently analysed, graphically illustrated and verified was at what time point the shift of an unstable point 
occurred. 
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Introduction 
 

Time series analysis presents one of the most significant applications of statistical methods in various 
branches. If some data are missing in an empirical time series they can be replaced by empirical data 
simulation. Simulation of the missing empirical data is then subjected to the time series analysis. The modelled 
time series is verified by regression and correlation analysis with the possibility of subsequent prognoses 
of the time series further development. 

Time series (TS) is a sequence of materially and spatially comparable data, positively from the point 
of time arranged in the past –to– present TS { } ., nii tx  TS is minimally two-dimensional (planar) selection 
of data, in which a random variable is explicitly bound to time and/or constitutes with the time in which 
it emerged an inseparable pair (triplet, etc.). TS present, in majority, waveforms of working quantities of a host 
of technologies: seismic, geophysical, biological, meteorological records, records on pollution of soil, water, 
air, demographical data, etc. Hence, the TS analysis is a set of methods applied to describing past behaviour 
of the TS, possibly for forecasting its future behaviour. 
 

Selection of processing space 
 

Provided that the only factor of dynamics is time, the principal one-dimensional TS model can be entered 
as a function of the modelled indicator in the form of  

),( tt Itfy = ,                 (1) 
where: tI  is value of the random component in time nt ,...,2,1= . Its modelling can be approached by applying 
the traditional (formal) model, the Box-Jenkins methodology or spectral analysis.  

With multi-dimensional models it is anticipated that development of the indicator being observed does not 
influence only the time factor but other factors as well nxxx ,...,, 21 . Such a multi-dimensional model  [5] can be 
entered in the form   

).,,...,,,( 21 tnt Ixxxtfy =                                                                                   (2) 
 
The Box-Jenkins methodology has the random constituent that can be made up of dependent random 

quantities for the TS model construing. Modelling of TS using the spectral analysis utilises Fourier series. 
The time series traditional model is based on breakdown of the time series to four components: 

tT  - Trend – long-term tendency, changes in average behaviour of the TS, 

tC  - Cyclic – around the trend fluctuations with varying lengths of cycle, with varying speed of changes 
within the rise and fall phases of TS values, 

tS  - Seasonal – periodic component, regularly reoccurring within a specific season (cycles), 

tI  - Random (irregular), which remains in the time series even once tt CT ,  and tS  components have been 
removed; made up of random influences; has no observable nature. 
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The model shape can be: 
Additive:  ttttt ISCTY +++=   - most frequently used in the practice,                                         (3) 
Multiplicative: ,ttttt ISCTY ⋅⋅⋅=  )loglogloglog(log ttttt ISCTY +++= ,                                   (4) 

where tY  - are expected, theoretical values of (dependent variable Y ) TS. 
The purpose of TS decomposition is to estimate the basic TS trend and to foretell the TS data by at least 

a single time step into the future. [2]. 
 

The trend component analysis 
 

Purpose of the TS analysis is seen especially in the tendency of its, i.e. of the trend component, analysis. 
The TS trend component can be obtained by various means, especially by: 
• simple diagrammatic (subjective) methods such as balancing of fluctuations, method of cycles averaging, 

sum of the areas of triangles method, 
• analytical formulation of the trend using trend functions – the entire time series is equalised at once, 

by a single function, 
• adaptive approaches – equalisation materializes gradually along shorter periods, e.g. using exponential 

smoothing, the moving averages method, etc. 
 
 

Analytic expression of the trend using trend functions 
 
In the practice most frequently used trend functions for both analysis and prognosis of time series are for 

example: linear, parabolic (Tab. 1), exponential, logistic trend etc.. The most often method of estimating 
the trend function parameters is the least squares method (LSM), which can be utilised in case that the selected 
trend function is linear at its parameters. Its advantage is simplicity and minimising of the residual component 
variance. It is directly appropriate for both linear and parabolic functions. In case of the exponential function 
this has to be linearized so that it would become linear from the point of parameters. [8] 

 
Tab. 1.  Analytic expression of the trend using trend functions: 

For constant trend it holds that: 
,,...,2,1,0 ntyaTrt ===  

 

For linear trend it holds that: 
,,...,2,1,10 nttaaTrt =+=  

10 ,aa  - calculation as at LRM 

For quadratic trend it holds that: 
(if ÷+− ++ ttt yyy 12 2  const.) 

,,...,2,1,2
210 nttataaTrt =++=   

210 ,, aaa  - calculation of the 2nd degree polynomial

Forecast: 0aYT =  Forecast: TaaYT 10 +=  Forecast: 2
210 TaTaaYT ++=  

  
 
The appropriate trend function type can be selected based on the time series past development analysis 

applying the interpolation criteria: 
• Factual/subject analysis of the examined phenomenon – if it is an increasing or decreasing function, 

if there is an inflection point or if in concern is an infinitely increasing function, an infinitely decreasing 
function, etc.  

• Time series diagram analysis – danger of visual selection dwells in its subjectivity, whilst the diagram 
shape is extremely dependant on the scale used. 

• Calculation of values of the trend function “success rates” – minimal sum of squares of residua, etc.. 
• Fisher characteristics of adequacy. 
• Analysis of the time series differences. [6]. 

 
TS modelling methods are based on the “future follows from the past” principle (in relatively stable 

environments), and thus are suitable also for forecasting, predicting, prognoses – data extrapolation: 
• Forecast – from the TS historical data calculated (objective) datum for the subsequent, future time step, 

usually derived from a short time series. 
• Prediction – from historical data of an appropriately long TS estimated datum for the next time step. 
• Prognosis – from long-term TS historical data estimated datum for a distant time horizon. 



Slavomír Labant, Gabriel Weiss: Analysis of a simulation of missing satellite observations in the deformation network 
 

160 

 
Quality TS extrapolation (forecast, prediction, prognosis) depends heavily on its type, and it seems 

to be most appropriate to utilise extrapolation criteria. Simulation rests in that separated from the analysed 
TS are several final values, calculated from the rest of them is the trend and its appropriateness is assessed 
based on how well it manages to extrapolate the unused part of the series. Suitable for extrapolating are only 
some 50 – 60 % of models [6]. Inequality coefficients most often present the rate of the model prognostic 
quality. 

 
Adaptive approaches to expressing the TS trend component 

 
Available are two concepts, namely the moving averages method and exponential smoothing. 
Exponential smoothing or degradation of historical data decreases weights of outdated data in a specific 

time interval. “Fresher“ values will be of more profound impact upon the analysed TS future development than 
“older” values. It seems to be highly appropriate to introduce weights that will be inversely related 
to the observation “age”. At exponential smoothing, the weights present exponential function of their ageing. 
[2]. 

The moving averages method resides in that that sequence of the original empirical observation 
is replaced by a series of moving averages. Most frequently used is moving average of 5, 7 or 9 values 
(at times also more), whereas with odd number of values the calculated moving average can be assigned 
directly to the middle member of contemplated values. 

Under the assumption that appropriate to apply on moving part of a balanced time series is the linear 
trend, calculated are simple moving averages  
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if it is more appropriate to use the parabolic trend, calculated are weighted moving averages in the form 
of  
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Used then are the following systems of weights iW  for: 
• Five-member weighted moving average  8/)2,3,6,3,2( −− ,                                (7) 
• Seven-member weighted moving average.. 21/)2,3,6,7,6,3,2( −− ,                        (8) 
• Nine-member weighted moving average  231/)21,14,39,54,59,54,39,14,21( −− .                     (9) 

 
The subjective problem that stays when calculating moving averages is the series. Most frequently opted 

for are averages of the lowest series. Shown in Tab. 2 are forecasting moving averages – for the case that 
calculated is being the anticipated value for a single forward time step. [8] [9] 
 

Tab. 2.  Weights of forecasting moving averages. 
Number of TS values Forecasting weights- 1st series Forecasting weights- 2nd series 

3 3/)4,1,2(−   
5 10/)8,5,2,1,4( −−  5/)9,0,4,3,3( −−

7 7/)4,3,2,1,0,1,2( −−  7/)9,3,1,3,3,1,3( −−−−

9 36/)16,13,10,7,4,1,25,8( −−− 42/)42,21,5,6,12,13,9,0,14( −−−−  
11 55/)20,17,14,11,8,5,2,1,4,7,10( −−−− 165/)135,81,37,3,21,35,39,33,17,9,45( −−−−−  

 
 

Regression and correlation analysis 
 

In scientific studies, quantitatively are often evaluated two or more quantities expressed by functional 
relations for 2D: ),(xfy =  or for 3D: ),( yxgz =  etc. Regression analysis deals with determining the type 
of relation among investigated correlated (dependent) variables. Correlation analysis, on the other hand, 
involves determining strength (tightness) of the relation amongst variables. Examined variables are empirical 
values ii yx ,  and the equalising curve )(xfy =  is continuous, and passes among points of the empiric 

polygon. Distances between points and the curve )(xfy =  present residua (regression errors) iε . Result 
of the regression analysis if functional dependency between variables ii yx ,  characterised by the equalising 
curve optimally approximated to the empirical polygon [1]. Thus, in concern is selection of an appropriate 
regression model type, and subsequently calculation of the best estimate of its parameters. Utilised for 
the purpose are multiple methods, the most universal one of them being the LSM, result of which                     
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is the so-called regression curve. The overall result will be a series of paired values that are taken for 
the measurement of a 2D quantity. At the regression analysis values of one variable are taken for 
the measurement of continuous random value y  for given values of the other variable x . Linear regression 
can be thus defined as evaluation of quantitative relations by the use of linear function. 
 

Linear regression model – LRM 
 

Empirical polygon (point diagram) of values ii yx ,  shows the tendency of direct dependency, and hence 
can be described by the 1st degree polynomial (straight line). The straight line represents an abscissa whereas 
its validity is restricted by the branch of values being processed ix  and iy . 

Relation between ix  and iy  can be “bidirectional”, i.e. trend value iŶ  may be dependant on ix  and/or 

trend value iX̂  may be dependant on iy . Calculation of parameters 01,aa , and 01,bb , respectively, as the so-
called their best estimates by use of the LSM is based on the pertinent shape of the target function: 

Type “ on xY„ iî :  xaaY 10 ˆˆˆ += ,   Type “ on yX„ ii
ˆ :  ybbX 10
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Appropriateness of compensations of values ii yx ,  using the LRM is determined based on the correlation 
characteristic: 
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• residual variance 2
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• theoretical variance 2
thes : yYatyY

n
s i

n

i
Y ≡−∑=

=
,)ˆ(1 2

1

2 ,  xXatxX
n

s i

n

i
X ≡−∑=

=
,)ˆ(1 2

1

2 .         (14) 

 
Approximately holding for appropriateness of by LRM processed data is the variance equation:  

222
theresove sss +≅                                                                                               (15) 

 
Evaluation of the regression model quality (functional dependence = 1, functional independence = 0): 

Determination index:  ;2
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Fisher’s adequacy characteristics:  ,2

2

rez

cel
ad s

sF =  ( 2
ress  should be as small as possible)                  (17) 

 

Pearson’s correlation coefficient:  ,
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whilst if )0(0 <>  r  the relation is positive (negative). 
The LRM of both types constitute so/called pooled regression models, and together they form so-called 

correlation scissors. The more the scissors are “open” the smaller is r , and the functional dependence is lower, 
and vice versa. If ,1±=r  the more functional the statistical significance becomes. Considered for proper 
regression model is if )8,0(7,0>r . [2] 
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Nonlinear regression models – NLRM 
 

Not always is selection of proper NLRM types easy. At times, nonlinear regression model can 
be by introducing functional relations among regression coefficients transformed into a linear model. The most 
frequently used types are: polynomial (up to 4-5 degree), power (potential), exponential, hyperbolic, logistic 
types, etc.. At selecting the most appropriate NLRM type form amongst the recalculated possible ones 
it is most appropriate to adhere to minimal sum of orders of evaluations (at identical overall variance) [1]: 

  
• minimal residual variance,    
• minimal theoretical variance,   

• max correlation index value, 
• min number of specified parameters, etc.. 

 
Experimental deformation network surveying and evaluation of the GNSS signals 

 
Experimental surveying was performed in the deformation network (DN) located in the vicinity 

of the upper reservoir of water transfer power station (WTPS) Čierny Váh, in the area of the Low Tatras 
National Park. Performed in the locality were observations using the GNSS technology and by static method 
using single-band GPS Sokkia Stratus receivers. [4] 

Terrestrial measurements cannot be performed whereas high forest cover precludes visibility between 

pairs of the network points. By the manufacturer stated precision for the static method of GNSS technology 

is in position of ppmDmm ij⋅+15  and elevation ppmDmm ij⋅+110 . Observations of DM consisting 

of 7 points were performed in 4/2004 and 7/2008, respectively, with sufficient time interval ( 

Fig. 1). Used in course of performing observations was the static method of determining position of all 
points of the network (5001 to 5007). Point 5001 was selected as the reference point of the network, whereas it 
was stabilised in the terrain of maximum size and flatness. The network was made up using 11 vectors (Fig. 1). 
Signals were in individual points of the network received within the time interval of 1 to 7 hours (7 hours – 
reference point 5001). 

Originally, the observed data were treated by 
post-processing in the software environment of 
Spectrum Survey, in the geocentric WGS-84 system 
of coordinates. The results were geographical 
coordinates λϕ,  and elevations h  of individual 
network points. Imported into the Trimble 
Geomatic Office software for the post-processing 
adjustment of the network were observations files in 
the RINEX 2.11 format from two reference stations 
SKPOS (SKLM and GANP). RINEX files provided 
for change of the system of coordinates in ETRS-
89, which accounts for movement of the Eurasian 
lithospheric plate, and hence also shift in relation to 
coordinate axes of the WGS-84 system. 

Used for processing was the Gauss-Markov 
model of full rank. Epochs 2004 and 2008 were 
adjusted both separately and applying bivariate 
methods using various weights [7]: 
1. According to recommendation of the 

technology manufacturer: ppmDmm ij⋅+15 , 
2. Seeding the covariance matrix from Spectrum 

Survey, where RMSs =2
0 , 

3. Seeding the covariance matrix from Spectrum Survey, where 12
0 =s , 

4. Weights of observations were estimated using the MINQUE method. 
 
From the point of standard deviations, the most precise proved to be the solution using covariance 

matrices from the Spectrum Survey. With the MINQUE method [3], the weights were estimated based 
on by the manufacturer recommended precision, whilst numeric results of processing proved that applying 
of MINQUE method was an adequate substitute of laborious inputting of covariance matrices from 
the Spectrum Survey. 

At investigating variations between epochs there are several millimetre differences in estimates 
of adjusted coordinates of points when different measurement weights are used. Yet, all of the processing 

 
Fig. 1.  Structure of 3D network in the location WTPS Čierny Váh.   
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performed pointed to a shift of point 5005 (coordinates differences of the point 5005: 1. 25,18 mm, 
2. 25,59 mm, 25,59 mm, 4. 24,95 mm – from adjust with using various weights). Revealed differences at other 
points were due to accumulation of measurement errors. 
 

Real time simulation 
 

Real time simulation presents investigating movement of a point between epochs 4/2004 and 7/2008. 
Observations that were between the epochs missing were obtained by simulation in the MATLAB software 
environment. At processing GNSS observations and testing of the deformation vector CCC ˆˆˆ 2004/42008/7 −=∆  
of network it was established that a fluctuation in point 5005 occurred between epochs 2004 and 2008. That is 
why was the point selected for more in detail examination using simulation. The purpose of simulation 
is to find out in which epoch could the methods used record movement of the point for the first time and to 
illustrate how was the point moving during the monitoring period. 

52 months passed between epochs 4/2004 and 7/2008, respectively, when were observations 
of the network performed. Chosen according to the number of months was also the number of simulated 
observations between the two epochs, i.e. the simulation consisted of 52 observations. The number was opted 
for so that met was the condition of a wide selection numerosity, where 30>n , and that the simulation 
graphical presentation was sufficiently transparent along all axes of coordinates, planes and in the 3D space. 

The prerequisite of a successful simulation is that movement of point 5005 is in space straightforward, 
regular, and that during the observation period the point would move from “ 50052004/4 “ to point “ 50052008/7

“. To simulate real time it proved to be necessary to obtain the observation vector that is loaded with random 
errors that continuously influence each of the measurements. 
 

Simulation of the observation vector loaded with random errors 
 

Simulation of real observations resides in loading by random errors that cannot be by any means 
eliminated. Random error i∆  is the error that at an identical measured quantity, method, measurement 
conditions and thoroughness of measurement randomly attains various quantities and signs. Mean value 
of the principal set of random errors with normal distribution is 0)( =∆E . Random (stochastic) errors are 
in the process of measuring occurring spontaneously, individually, and are not subject to any natural relations. 

 
Their properties are established based on empirically 

established qualities of random errors: 
• probability of occurrence of a positive or negative 

error is identical, 
• small errors are more probable than major errors; 

probability of the error occurrence is a function of 
their magnitude, 

• errors that exceed certain limit are taken for gross 
errors, and no errors are occurring beyond certain 
boundary. [1]. 
 
Used during simulating random errors 

in the observation vector L2004/4  ( L  from epoch 4/2004) 
performed in MatLab environment was the “normrnd“ 
command, which out of the input data (observations) 
generates input observations of the subsequent epoch that 
are loaded with normally distributed random errors. The 
input data can be a scalar, vector (our case) or a matrix. 
Value of the random error is influenced by standard 
deviation the size of which is defined. The input data are 
the observation vector L2004/4  and the standard deviation 

][mσ . Used at simulating was the standard deviation that 
had been specified by the manufacturer to be of .5mm=σ  
Input vector L2004/4  and by errors loaded simulated vector 
from epoch L2004/5  (the 1st simulated epoch) are shown in 
 Tab. 3 . 

Simulated observation vector L2004/5  was used 
in bivariate adjustment of the network in epoch 5/2004. 
Whereas the shift occurred at point 5005, investigated 

Tab. 3 Vector of real and simulated observations 
Observation 

vector 
4/2004L 
[m] 

5/2004L 
[m] 

dL 
[mm] 

5001 
5002 

∆X   -38,650   -38,6489 -1,1 
∆Y -210,806 -210,8047 -1,3 
∆Z     78,159     78,1651 -6,1 

5001 
5003 

∆X -205,608 -205,6094 1,4 
∆Y -234,000 -234,0007 0,7 
∆Z   183,508   183,5016 6,4 

5001 
5004 

∆X -379,841 -379,8493 8,3 
∆Y    10,425     10,4215 3,5 
∆Z   287,820     287,8214 -1,4 

5001 
5005 

∆X -411,409 -411,4117 2,7 
∆Y     71,426     71,4193 6,7 
∆Z   302,107   302,1124 -5,4 

5001 
5006 

∆X -285,825 -285,8286 3,6 
∆Y   405,734   405,7339 0,1 
∆Z   110,219   110,219 0,0 

5001 
5007 

∆X     -74,740     -74,7412 1,2 
∆Y   508,855   508,857 -2,0 
∆Z    -95,332   -95,3333 1,3 

5002 
5003 

∆X -166,978 -166,9863 8,3 
∆Y   -23,200   -23,2051 5,1 
∆Z   105,385   105,3862 -1,2 

5003 
5004 

∆X -174,199 -174,2053 6,3 
∆Y   244,44   244,4383 1,7 
∆Z   104,319   104,3143 4,7 

5004 
5005 

∆X     -31,584   -31,5899 5,9 
∆Y      60,983     60,9779 5,1 
∆Z      14,281     14,2790 2,0 

5005 
5006 

∆X   125,589   125,5899 -0,9 
∆Y   334,316   334,3154 0,6 
∆Z -191,873 -191,8677 -5,3 

5006 
5007 

∆X   211,088   211,0868 1,2 
∆Y   103,129   103,1214 7,6 
∆Z -205,581 -205,5810 0,0 
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The forecast that most closely reflects linear trend of simulation also most closely corresponds with 

the forecast of 7 and 11 TS values. 
Examined was also mutual correlation between coordinates of point 5005. In the YZ  plane, where 

the tests certify the most profound movement, also the correlation is highest. In the other two cases are 
correlation scissors slightly opening, which point to a lower level of correlation (Fig. 5). Tests of the D1  
deformation vector Cd ˆ  confirm shift of point 5005, whilst there was no movement evident along axis X . 
Hence, the trend of movement of point 5005 along axis X  is not the same as is the case along axes Y  and ,Z  
where the shift is comparable. Shift of point 5005 can be demonstrated by statistical processing already from 
the 25th simulation epoch (Fig. 2, Fig. 5). 

 

Fig. 5.  Correlation of individual constituents of movement of point 5005 in simulation. 
 

3D visualisation of point 5005 (Fig. 6) 
in both epochs with absolute confidence 
ellipsoids and positions of points 5005 from 
individual simulation epochs during the 
observation period (52 months). 

 
Conclusion 

 
Deformation analysis demonstrated in 

the period of 2004 to 2008 travel of point 
5005, and this was used for further 
analysing using simulations. Missing 
observations were obtained via simulation in 
MatLab programming environment. 
Anticipated was even straightforward shift, 
whilst observations were loaded with 
random errors. In between epochs 2004 and 
2008, gradually determined were 52 
positions of the point. 

Examined by use of time series were 
the time points when the methods 
commenced to demonstrate shifts of the 
point, which provided the possibility to 
forecast the following point position. Simulation results proved that usage of time series was appropriate for 
determining movement of the point among epochs, and in addition they demonstrated relevance of the real-
time measurement for early revealing of deformations and timely commencement of remedial activities. 
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