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Multivariate statistics application in development of blast fragmentation 
charts for different rock formations in quarries 
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Rock fragmentation is considered to be one of the most important aspects of quarrying because of its direct effect on the costs 

of drilling, which include blasting, loading, hauling and crushing. Thus, it is essential to consider fragmentation size in blasting design. 
Fragmentation depends on many variables, such as rock properties, geological structures, and blasting parameters. Although empirical 
models for the estimation of the size distribution of rock fragmentation have been developed by considering these parameters, 
no complete empirical prediction model for fragmentation exists since rock properties and geological structures vary from site to site. 
However, these models regard rock properties as constant. In this study, a step–wise multiple linear regression analysis has been 
carried out to determine the degree of dominance of various influencing parameters on fragmentation and to develop a fragmentation 
prediction model. The results showed that the rock mass properties, burden width and specific charge are the main parameters affecting 
fragmentation. The relations among those parameters were used to develop guideline charts to determine blast layouts for desired 
fragmentation on the basis of rock characteristics. 
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Introduction 
 

Quarries are a main source of aggregate for the construction work of infrastructures and housings. 
Blasting is one of the most important processes in a quarry since blasting affects the productivity 
and efficiency of quarrying, which is based mainly on the rock fragmentation. If rock fragmentation does not 
result in the desired size, production costs may be increased due to undesired secondary blasting 
and crushing. Mechanical crushing and grinding are particularly expensive operations at a mine, 
and considerable cost and throughput benefits can be obtained by breaking the rock through the effective use 
of explosives (Eloranto, 1997; Simangungsong, 2003). Therefore, blasting design should take rock 
fragmentation into account in order to cut down on costs. Over the years, many studies have tried to predict 
the fragmentation of rock from blasting (Cunningham, 1983, 1987; Morin and Ficarazzo, 2006; Zagreba, 
2003). 

It is a known fact that fragmentation is a function of three groups of parameters: rock mass properties, 
blast geometry, and explosive properties (Chatraborty et al., 2004; Koruc et al., 2002; Thorton et al., 2002). 
Among these parameters, rock mass properties are non-controllable but they should be known before 
blasting. The explosives used in mining operations are mainly bulk blasting agents (ANFO, Slurries, 
Emulsions), so in one sense, explosive properties might also be assumed to be non-controllable parameters. 
Then the only remaining controllable parameter is the blast geometry (burden, spacing, stemming, hole-
diameter, and hole length). In addition to these parameters, the specific charge is also a controllable 
parameter since it is a function of blast geometry and specific gravity of explosive. 

By analyzing the rock, fragmentation size after blasting, it is possible to design a blasting pattern for 
target fragmentation. In this study, rock fragmentation is analyzed from actual blasting in a quarry operation 
by using an image processing program; then a multiple linear regression analysis is performed to determine 
the effect of variables on fragmentation and to define a fragmentation prediction model. 

 
Fragmentation assessment methods 

 
In many cases fragmentation assessment that uses sophisticated image processing programs has replaced 

conventional methods, such as visual analysis, photography, photogrammetry, boulder count, and sieve 
analysis techniques (Chatraborty et al.,2004). Image processing includes image capturing of the muck pile, 
scaling the image, filtering the image, segmentation of the image, and measurement. Although this method 
allows rapid and accurate blast fragmentation size distribution assessments, many problems can 
be encountered while using image analysis programs. These problems are mainly as follows (Franklin et al., 
1995; Kim et al., 2006; Ozkahraman, 2006): 
1. these programs cannot take into account the interior rock: they can analyze only what is on the surface, 
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2. the analyzed particle size can be over-divided or combined. In other words, big boulders could be 
divided into smaller particles and smaller particles could be grouped into bigger particles, 

3. fine particles can be underestimated, especially in a muckpile. 
 
The best way to avoid these problems is to select the proper sampling strategies. Image processing 

programs provide better results if the thickness of the pile is small (Kim, 2006; Ozkahraman, 2006). Among 
the different image–processing programs, the following are the most commonly used: IPACS, TUPICS, 
FRAGSCAN, WIPFRAG and SPLIT (Cunningham, 1995; Dahlhielm, 1996; Haverman and Vogt, 1996; Liu 
and Tran, 1996; Maerz et al., 1996; Schleifer and Tessier ,1996).  

In this study, digital image analysis using SPLIT 2.0 software was adopted for assessing the fragment 
size (P20), (P50), (P80) and (Pmax) from muck piles. The analysis technique includes steps like the image 
captures of a muckpile, uploading the images in the computer and analysis in the computer like scaling 
the image, filtering the image, edge detection, and conversion of 2D information to 3D. Fig. 1 shows 
a photograph of a muckpile together with two 220 mm ball images for scaling purposes. Fragmentation 
scaling is determined by the program.  

 

 

 
 

Fig. 1.  The photo of Muckpile and SPLIT 2.0. results. 
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Field Investigation 

 
The operation area was divided into 6 regions by visual observation on the basis of color and fissure 

since it is the easiest parameter to use for classifying various kinds of rocks. Then rock samples were 
collected from each region to determine the selected rock parameters, and the results are given in Tab. 1.   

 
Tab. 1.  Rock Properties. 

 
Regions Unit 

R1 R2 R3 R4 R5 R6 

Uniaxial compressive strength  
               (UCS) 

Max  144 132 100 86 73 58 

Mpa 
Min  110 102 87 71 60 37 

Std Dev. 7.95 7.45 3.92 4.38 4.28 5.27 
Average 131.19 117.00 93.92 79.10 66.07 45.25 

Density 

Max  2.78 2.78 2.75 2.78 2.8 2.78 

gr/cm3 
Min  2.51 2.61 2.6 2.54 2.54 2.54 

Std Dev. 0.07 0.04 0.05 0.08 0.10 0.07 
Average 2.68 2.69 2.70 2.69 2.69 2.69 

Porosity 

Max  0.33 0.38 0.38 0.39 0.38 0.39 

% 
Min  0.25 0.27 0.28 0.26 0.29 0.33 

Std Dev. 0.03 0.03 0.03 0.04 0.03 0.02 
Average 0.29 0.31 0.33 0.34 0.35 0.37 

Water absorption by weight 

Max  0.12 0.17 0.15 0.15 0.16 0.17 

% 
Min  0.09 0.10 0.10 0.11 0.10 0.10 

Std Dev. 0.01 0.02 0.02 0.01 0.02 0.02 
Average 0.11 0.14 0.12 0.13 0.13 0.14 

Schmidt hardness Average 52 49 45 42 40 37 L(ISRM) 

 
 
As it can be seen in Tab. 1, the UCS (Uniaxial Compressive Strength)’s are different for each region with 

the highest average UCS of 131.19 Mpa for in region 1 and the lowest average UCS of 45.25 Mpa for 
in region 6. This situation indicates that the visual color-based classification is confirmed by the laboratory 
tests. In addition to the rock mechanic tests, microscopic views of rocks taken from each region have been 
prepared (Fig. 2). The microscopic views indicate that the calcite minerals are large for region 1, and they 
became smaller through region 6. The micro cracks are seen in the microscopic views of rocks taken from 
region 2 and then number of cracks increases from region 2 through region 6. In these cracks, clay, iron-
oxide and manganese are seen. Therefore, the color of the rocks varies from region to region.  

 

Microscopic view of region 1 Microscopic view of region 6 

Fig. 2.  Microscopic views of rocks taken from different region. 
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A total of 141 blasts were conducted in the quarry operation. Different rock mass properties, blast design 

parameters and blast results were observed in various rounds of blasting. The blast design parameters were 
different for each blasting mainly because of variations in the rock mass properties, the bench configurations, 
and the required production. The parameters of each blast round were recorded. The records and resulting 
fragmentation size distribution for each blast in region 1 are given in Table 2. 

 
Tab. 2.  Blast Parameters and Fragmentation Distribution for region 1. 

Region 
Hl  B  S  Cl  St  Qe.  p  q  P20 P50 P80 Top  

[m] [kg/hole] [m3/hole] [kg/m3] [mm] 

1 

12 3 2,4  8,1 3,9 75 86 0,87 72,83 470,26 690,91 1407,29 

12 2,9 2,9  8,1 3,9 75 101 0,74 96,69 407,61 772,1 1399,03 

12 2,8 2,4  8,1 3,9 75 81 0,93 94,41 389,89 612,63 1103,01 

12 3 2,9  8,1 3,9 75 104 0,72 93,67 464,37 920,97 1816,93 

12 2,5 2,5  8,1 3,9 75 75 1,00 92,55 207,4 640,54 704,88 

12 3 2,7  8,1 3,9 75 97 0,77 79,2 485,34 710,23 1320,34 

14 2,5 3 10,8 3,2 100 105 0,95 64,77 206,05 471,99 777,58 

14 4 3,4 10,8 3,2 100 190 0,53 79,65 701,35 1369,61 2507,28 

9 2,9 2,5   4,9 4,1 50 65 0,77 70,64 410,44 924,27 1138,22 

9 3,1 2,5   4,9 4,1 50 70 0,72 58,22 554,72 1159,5 1479,91 

9 2,8 2,5  4,9 4,1 50 63 0,79 56,35 513,77 770,17 1295,34 

9 2,6 2,5  4,9 4,1 50 59 0,85 49,7 366,96 636,76 797,21 

9 3,5 2,5  4,9 4,1 50 79 0,63 198,54 650,49 1316,13 1656,97 

9 3,2 2,6  4,9 4,1 50 75 0,67 52,8 585 932,99 1588,25 

9 2,4 2,5  4,9 4,1 50 54 0,93 36,29 323,9 261,02 608,25 

9 2,1 2,6  4,9 4,1 50 49 1,02 45,85 101,12 166,65 289,55 
Hl- hole length, B-Burden, S-Spacing, Cl-column length, St-stemming, Qe-explosive amount, p-production, q-specific charge 

 
 
Data Analysis 
Multiple linear regression (MLR) analysis is performed in order to assign relative importance 

to the independent variables, which may be interrelated. MLR analysis can be performed with the following: 
a, Backward elimination: In this procedure, correlation starts with all the independent variables that 

are in the equation. The variables are checked one at a time, and the least significant is dropped from 
the model at each stage until the remaining variables in the equation provide a significant contribution 
to the prediction of the dependent variable. 

b, Forward selection: In forward selection, the independent variable having the largest partial correlation 
is first selected, and its correlation is established with the dependent variable. Then variables are 
checked one at a time, and the most significant is added to the model at each stage. The procedure 
is terminated when all of the variables not in the equation have no significant effect on the dependent 
variable. 

c, Stepwise regression: In this procedure, the regression equation is determined without any variables 
in the model. Variables are then checked one at a time using the partial correlation coefficient 
as a measure of importance in predicting the dependent variable. At each stage the variable with 
the highest significant partial correlation coefficient is added to the model. This procedure is continued 
until no further variables can be added or deleted from the model. 

d, Simultaneous method: This method is called the “Enter Method” by the SPPS (Statistical Package for 
the Social Sciences ) program. In this method, the user specifies the set of predictor variables for which 
the model is used. Then the success of the model for predicting the dependent variable is measured.  
 
The simultaneous method is defined as the safest method to use, especially if there is no theoretical 

model (Brace et al., 2003).  Therefore, the simultaneous method is used in this study. 
In the first test, the degrees of influence of the UCS, the burden, spacing, and specific charge 

on the fragmentation size (P80) were determined using the Enter Method of MLR.   The steps of the test were 
as follows: 
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Systematic differences among the fragmentation sizes of the six regions were controlled with dummy 
variables (d2, d3, d4, d5, d6). A dummy variable is often used in regression models to distinguish different 
treatment groups, such as locations having a different UCS. The dummy variables given in Tab. 3 will enable 
us to use a single regression equation to represent regional differences. For example, d2 is one for 
66.07 MPa, and zero for all other strengths. It is expected that P80 will increase with UCS. 

 
Tab. 3.  Regional Intercept Dummy Variables. 

Uniaxial Compressive Strength 
[Mpa] 

Dummy Variables 

d2 d3 d4 d5 d6 

45.25 0 0 0 0 0 
66.07 1 0 0 0 0 
79.1 0 1 0 0 0 

93.92 0 0 1 0 0 
117 0 0 0 1 0 
131 0 0 0 0 1 

 
 

Tab. 4. Summary of Multiple Regression Analysis. 
a) Model Summary 

Model R R Squareb Adjusted R Square 
Std. Error of the 

Estimate 

1 .991a .983 .982 84.72839 
a. Predictors: d6, d5, d4, d3, d2, S, B, q
b. For regression through the origin (the no-intercept model), R Square measures the proportion 
of the variability in the dependent variable about the origin explained by regression. This 
CANNOT be compared to R Square for models which include an intercept. 

b) ANOVAc,d 

Model Sum of Squares df Mean Square F Sig. 

1 Regression 5.410E7 8 6762511.354 941.998 .000a 

Residual 947614.747 132 7178.900   

Total 5.505E7 140    
a. Predictors: d6, d5, d4, d3, d2, S, B, q   
b. This total sum of squares is not corrected for the constant because the constant is zero for regression through the origin. 
c. Dependent Variable: p80     
d. Linear Regression through the Origin    

c) Coefficientsa,b 

Model 

Unstandardized Coefficients 
Standardized 
Coefficients 

t Sig. B Std. Error Beta 

1 B 277.384 18.004 1.373 15.407 .000 

S -11.146 24.095 -.058 -.463 .644 

q -836.768 72.547 -.879 -11.534 .000 

d2 196.659 24.275 .116 8.101 .000 

d3 291.177 25.986 .171 11.205 .000 

d4 386.813 26.664 .271 14.507 .000 

d5 512.376 31.379 .324 16.329 .000 

d5 673.095 40.921 .363 16.449 .000 

 
The results of the MLR are given in Tab. 4. The following can also be interpreted from Tab. 4: 

• The equation of the model is as follows(Tab. 4c): 
 

5095.6734376.5123813.386
2177.2911659.196768.836146.11384.27780

ddd
ddqSBP

×+×+×+
×+×+×−×−×=

 

 
• The ability of the model equation to fit the actual data as indicated by the adjusted R square is 0.982. 

It means that the correlation of this regression relationship is very high (Tab. 4a). 
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• The “F” value for the model and the coefficients of the independent variables, with the exception 
of “Spacing,” are significant at the 1 % level of significance (Tab. 4b). The signs of the variables are 
consistent with the expectations (the signs associated with all regression coefficients are in accord with 
a priori expectations). 

• The regional intercept dummy variables are significantly different from zero, which suggests that 
the categorization of location by uniaxial compressive strength is one of the key explanators 
of fragmentation size differentials. As the UCSs increase, the intercept of the model increases. 
 
In Table 4c, the high value for the standardized Beta coefficient indicates that the specific charge in this 

predictor variable has a large effect on the dependent variable. The t and sig(p) values give a rough indication 
of the impact of each variable. Big t values and small p values indicate that a variable has a large impact 
on the criterion variable. The results indicate that “spacing” has no impact on the fragmentation size, as it can 
be seen that t=-4.63 and p=0.644 for “spacing.” Because of this, another regression model excluding 
“spacing” and given in Table 5, was tried. 

 
Tab. 5.  Summary of Multiple Regression Analysis (excluding “spacing”). 

a) Model Summary 

Model R R Squareb Adjusted R Square 
Std. Error of the 

Estimate 

1 .991a .983 .982 84.47765 
a. Predictors: d5, d4, d3, d2, d1, B, q
b. For regression through the origin (the no-intercept model), R Square measures the proportion 
of the variability in the dependent variable about the origin explained by regression. This 
CANNOT be compared to R Square for models which include an intercept. 

b) ANOVAc,d 

Model Sum of Squares df Mean Square F Sig. 

1 Regression 5.410E7 7 7728364.953 1082.939 .000a 

Residual 949150.904 133 7136.473   

Total 5.505E7 140    
a. Predictors: d5, d4, d3, d2, d1, dilkal, bpmm    

b. This total sum of squares is not corrected for the constant because the constant is zero for regression through the origin.
c. Dependent Variable: p80     
d. Linear Regression through the Origin    

c) Coefficientsa,b 

Model 

Unstandardized Coefficients 
Standardized 
Coefficients 

t Sig. B Std. Error Beta 

1 B 269.864 7.715 1.336 34.978 .000 

q -863.169 44.653 -.907 -19.331 .000 

d1 195.561 24.087 .115 8.119 .000 

d2 294.929 24.615 .173 11.982 .000 

d3 392.524 23.564 .275 16.658 .000 

d4 519.780 26.911 .329 19.315 .000 

d5 686.091 29.665 .370 23.128 .000 
a. Dependent Variable: p80    
b. Linear Regression through the Origin    

 
 
The new regression model can be interpreted as follows: 

• The equation for the model is as follows: 
 

5091.6864780.5193524.392
2929.2941561.195169.863864.26980

ddd
ddqBP

×+×+×+
×+×+×−×=

 
 

• For different UCS values, the predictor equations are given in Table 6. 
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Tab. 6.  Predictor equations for each region. 

Region UCS 
[MPa] Models 

R1 45.25 qBP ×−×= 169.863864.26980  

R2 66.07 qBP ×−×+= 169.863864.269561.19580  

R3 79.01 qBP ×−×+= 169.863864.269929.29480  

R4 93.92 qBP ×−×+= 169.863864.269524.39280  

R5             117 qBP ×−×+= 169.863864.269780.51980  

R6             131 qBP ×−×+= 169.863864.269091.68680  

 
 

• The adjusted determination coefficient is 0.982, which means that the derived model satisfactorily 
explain the relation between the fragmentation size and the involved variables.  

• The p-value for the F-test statistic is less than 0.01, providing strong evidence against the null 
hypothesis which states that the coefficients of the predictors are equal to zero. 

• Each coefficient of the predictors has the expected sign and all are significantly different from zero 
at the 1 % level.   

 
 

Development of guideline charts 
 

The MLR analysis indicated that the critical parameters for fragmentation size are the UCS of the rock, 
burden, and specific charge, as given in Tab. 5. Among those parameters, UCS is the uncontrollable 
parameter, and it varies within the quarry. The equations given in Tab. 6 define the relation among fragment 
size, burden, specific charge, and the UCS of rock. Based on these relations, blasting design charts were 
developed to determine the size of the controllable parameters for obtaining the desired fragmentation size 
in different areas of the quarry. The charts, having been developed for different UCSs, are given in Fig. 3 - 5. 
The charts provide specific charge recommendations on the basis of the desired fragmentation and the given 
burden. By using these charts, a planning engineer can easily determine the specific charge needed for 
the known area of a quarry in order to get the desired fragmentation size.  

 

 
Fig. 3.  Type I Chart (P80=800 mm). 
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Fig. 4.  Type II Chart (Burden width = 2,5 m). 

 

 
Fig. 5.  Type II Chart(Burden width = 3 m). 

 
 

Conclusions 
 

The desired fragmentation in quarry blasting is defined by the end use of the product. The task 
of fragmentation assessment has been quite easy and fast with the advent of digital image processing 
techniques using various software packages. Precise guidelines are yet to be evolved to predict or control 
fragmentation size in various kinds of formations. An MLR analysis was carried out, keeping the observed 
80 percentile (P80) fragment size as a dependent variable and various parameters such as UCS, burden, 
spacing, and specific charge as independent variables. The UCS, burden, and specific charge were found 
to be the most dominant variables, and the prediction models were developed on the basis of these 
parameters. The specific charge is a function of explosive density, hole-diameter, stemming, burden 
and spacing. Among these parameters, explosive density and hole-diameter are not easy to change. 
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So in order to change the specific charge, the stemming, burden, and/or spacing should be changed. 
On the basis of developed prediction models, different blasting guideline charts have been drawn 
to determine the specific charge for the desired fragmentation size. The prediction models and charts, which 
are site-specific, provide the planning engineer with a tool to design better blasting for the desired resulting 
fragmentation size in a given part of the quarry. These charts were developed by using different software 
(SPLIT 2.0., SPPS and MS EXCEL), and similar studies can be carried out for different quarries in order 
to develop site-specific charts. Hence, the study can be further expanded to consider more independent 
variables in order to obtain more precise guidelines to define a specific charge for a desired fragmentation 
size. 
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