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Using the classical linear regression model in analysis of the dependences 

of conveyor belt life  
 
 

Miriam Andrejiová1 and Daniela Marasová2 
 
 

The paper deals with the classical linear regression model of the dependence of conveyor belt life on some selected parameters: 
thickness of paint layer, width and length of the belt, conveyor speed and quantity of transported material. The first part of the article is 
about regression model design, point and interval estimation of parameters, verification of statistical significance of the model, 
and about the parameters of the proposed regression model. The second part of the article deals with identification of influential 
and extreme values that can have an impact on estimation of regression model parameters. The third part focuses on assumptions of 
the classical regression model, i.e. on verification of independence assumptions, normality and homoscedasticity of residuals. 
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Introduction 
 

Belt transport belongs to continuous transport systems characterised by great performance and capacity. 
Belt conveyors are used to transport different material in many industries, such as mechanical engineering, 
metallurgy, mining, building etc. One of the main parts of a belt conveyor is the conveyor belt, which is 
made from flexible parts able to transmit axial forces of longitudinal and transverse bending.   

The conveyor belt is the most important part of belt conveyors. At the operation, it is exposed to high 
stress, abrasion, wear, bad meteorological conditions, heat, chemical substances.  It serves for driving the belt 
conveyor and it moves together with the load by looping around the drive pulley and idler after its endings 
are laterally joined. The belt is driven by table rolls and consists of the upper driving line and of the bottom 
reverse layer [8, 9]. 

Our paper will deal with the linear regression model to determine dependence of the conveyor belt life 
based on some parameters got from the operation logbook at the quarry Včeláre (Tab. 1), where there are 
over 30 belt conveyors, including the mobile ones used mainly for finishing. We will take into consideration 
only the conveyor belts the operation life of which we were able to detect. 

The service life of conveyor belts is the main parameter of economical effectiveness of belt transport. 
Many factors have a direct or indirect impact on the life of conveyor belts. The optimal life L of conveyor 

belts was calculated according to the relation ( )
r

vz

c
ccL −

=
2 , where zc  is the cost of acquisition, vc  is 

the residual cost of the conveyor belt and rc are increasing maintenance costs [10, 11, 12]. 
 

Regression model, estimation of the parameters and verification of the regression model 
 

We will examine the dependence of the life of 18 conveyor belts on some parameters: thickness of paint 
layer, width and length of the conveyor, speed and the quantity of transported material per 1 m2. Basic 
descriptive statistics are in the Tab. 1.   

 
The linear regression model, which characterizes dependence of the optimal life of the belt Z (dependent 

variable) on independent (explanatory) variables (thickness of the paint layer of the conveyor belt t, its width 
w, its length l, its speed s, transported quantity of material q) is the following [1] 
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Tab. 1.  Simple descriptive statistics. 
Variable  Count Mean Std dev Sum Minimum Maximum 

Thickness of paint t (mm) 18 7,500 1,505 135,0 6,0 12,0 

Width w (m) 18 1,056 0,192 19,0 0,8 1,4 

Length l (m) 18 65,222 64,147 13558,9 7,0 196,0 

Speed s (m/s) 18 1,489 0,128 26,8 1,4 1,8 

Quantity of transported   q  per t/hm2 18 6,240 7,434 112,3 0,4 25,7 
Life L (month) 18 19,211 10,441 345,8 8,4 40,4 

 
 

iiiiiii xxxxxy εββββββ ++++++= 55443322110
)

, or  
 

εββββββ ++++++= 55443322110 xxxxxy) ,       (1) 
 

where qx,sx,lx,wx,tx ===== 54321  and  Ly =) . 
 
Generally, the point estimation for the linear regression model is 
 

kiiiiii xbxbxbxbxbby 55443322110 +++++=)
, 

 
where iy)  is fitted (theoretical) value of the dependent variable, 0b  is estimation of the intercept and jb ,  

51 ,,j K=  is the partial coefficient that is the point estimation of the regression coefficient. The point 
estimation of the model of the conveyor belt is   

 

54321 9470055225067309979425220527822 iiiiii x,x,x,x,x,,y +−−+−=) .                (2) 
 
The constant 5278220 ,b =  represents the average conveyor belt life.  Points estimation and confidence 

intervals for each regression model coefficients are shown in Table 2.  
 

Tab. 2.  Points estimation and confidence intervals. 
 

Coefficient 
 

Points estimation 
90 % interval 95 % interval 

Lower  limit Upper limit Lower limit Upper limit 

0b  22,5278 −2,9655 48,0211 −8,6372 53,6929 

1b (t) −0,2522 −2,0613   1,5569 −2,4638   1,9594 

2b (w)   4,9979 −7,2178 17,2135 −9,9356 19,9313 

3b (l) −0,0673 −0,1097 −0,0248 −0,1192 −0,0154 

4b (s) −5,5522 −21,4327 10,3877 −24,9724 13,9274 

5b  (q)   0,9470     0,5866   1,3054     0,5089   1,3851 

 
The graph of fitted (theoretical) life values iy)  

versus residuals between empirical values and fitted 
values is presented in Fig.1. 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1.  Graph of fitted life values vs. residuals. 
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The interval estimation of the model parameters can be used for statistical testing to define significance 

of the model parameters. In case the zero lies in the given interval of parameter reliability, then the given 
parameter is statistically insignificant (in our case almost all coefficients, except 3b  and 5b , seem to be 
statistically insignificant).   

By using F-test of the statistical significance of the model, we will verify to what extent the linear 
regression model estimated via the method of least squares defines the variability of the dependent variable, 
and we will see if the influence of an explanatory variable on an explained variable (conveyor belt life) is 
relevant or not. We test the hypotheses: :0H regression model is not statistically significant, (all regression 
coefficients are zero) versus :1H  regression model is statistically significant, (at least one regression 
coefficient is not zero). In the Tab. 3 there is the final variance analysis for the proposed regression model. 

 
Tab. 3.  Analysis of Variance. 

Variability Sum of squares Degrees 
of freedom Average square Test  characteristic 

F 
Explained by the 
model 7691598,SSM =  5=Mdf  7538,319=MMS  

   08,15==
R

M

MS
MS

F  
Residual  4489254,SS R =  2=Rdf  204121,MSR =  

Total  2181853,SST =  17=Tdf    

 
The value of the test characteristic is 08,15=F , the critical value ( ) 106,312;595,0 =F . Since 

( ) 10631250815 950 ,;F,F , =>=  (p-value α<= −610148 ., ), we reject the null hypothesis at the significance 
level 05,0=α and we can assume that the proposed regression model is statistically significant; and at least 
one of the explanatory variables has a considerable impact on the conveyor belt life. The quotient 

%,%.
SS
SS

T

M 2786100 =  represents the variability of the life variable L explained by this model. 

The statistical significance of individual parameters will be verified by means of the t-test of 
the statistical significance of the regression coefficient jβ . We test :0H regression coefficient is not 

statistically significant, or ( 0=jβ ) versus :1H  regression coefficient is statistically significant,                           

or ( 0≠jβ ).   

We reject the null hypothesis at the significance level only in two cases (p-value <α) – the parameters of 
conveyor belt length l and of transported quantity of material q.  We do not reject the null hypothesis in 
the other cases, and the explanatory variables conveyor width w, thickness of paint layer t and conveyor 
speed s can be excluded from this model. 

In the Tab. 4 there are parameter estimations, interval estimations of the parameters and assessment of 
explanatory variables contribution to the proposed model.   

 
Tab. 4.  Parameter estimations and t-test. 

Parameter Point estimation t p-value 
95 % interval 

Lower Limit Upper Limit 

0b  22,5278 1,575 0,1412 −8,6372 53,6929 

1b (t) −0,2522 −0,248 0,8080 −2,4638 1,9594 

2b (w) 4,9979 0,729 0,4799 −9,9356 19,9313 

3b (l) −0,0673 −2,825 0,0153 * −0,1192 −0,0154 

4b (s) −5,5522 −0,619 0,5477 −24,9724 13,9274 

5b (q) 0,9470 4,710 0,00045 * 0,5089 1,3851 

 
The point estimation of the multiple correlation coefficient ρ  is the sample multiple correlation 

coefficient 92880,r = . The adjusted (rectified) coefficient of the determination 89750,radj =  is so called 
undisturbed estimation of the multiple correlation coefficient of the determination; it takes into consideration 
the number of explanatory parameters of the model. 
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We test the statistical significance of multiple correlation coefficient by performing test.  The null 
hypothesis is :0H 0=ρ  against alternative hypothesis :1H 0≠ρ . Since value of test statistic is 

( ) 106,312;515 95,0 =>= FF , the null hypothesis can be rejected and it can be assumed, that on significance 
level 05,0=α  between described variable and explanatory variables is statistically significant linear 
dependency.  

 
Identification of the influential and outlying values  

 
The identification of the influential values is not a simple or an unambiguous matter. In order to 

diagnose influential observations and to verify assumptions about the random component of the regression 
model, the projection matrix H  (hat matrix) and different types of residuals are used [13]. 

The diagonal elements iih  of the hat matrix are called project elements h, or influence, effect (leverage) 
and they assess the influence of observation i  on the values of estimated parameters. They get the values 

10 ≤≤ iih  (or 11
≤≤ iih

n
) and their sum is pkh

n

i
ii =+=∑

=

1
1

. The average value of the diagonal element is 

n
phii = , where p is the number of estimated parameters of the model and n is the number of observations.   

The observation, where the element 
n
phii

2
>

 
 is considered as extreme observation [13]. An extreme 

observation may not be influential; on the contrary an observation with a small element iih  can influence 
the estimation of the regression model parameters.  

 
To assess the quality of the regression model, the residuals are used [10]. We will use classical residuals 

iii yye )−= , where iy are empirical values and iy)  fitted (theoretical) values, predicated residuals 

( )
ii

i
ii h

e
e

−
=− 1

, studentized residuals
iirez

i
Si

hs
e

e
−⋅

=
1

 and jackknife residuals 
( ) iiirez

i
Ji

hs
e

e
−⋅

=
− 1

, 

where rezs  is the residual standard deviation belonging to the regression model based on n observations, 
and ( )irezs −  is the standard residual deviation belonging to the regression model based on  1−n observations. 

 
There are several ways (statistics) how to identify influential points [13]: 

• ( )∑
=

−=
n

i
iiePRESS

1

2 , if the quotient 
( )

∑

∑

=

=
−

=
n

i
i

n

i
ii

e

e

q

1

2

1

2

 is much higher than 1, it indicates influential 

observations, 

• ( ) Ji
ii

ii
i e

h
h

DFFIT ⋅
−

=− 1
, where observation i  is considered as influential, if ( ) n

pDFFIT i ⋅>− 2 , 

• cook distance ( )ii

iiS
i hp

he
D i

−⋅

⋅
=

1

2

, if
n

Di
4

> , then observation i  is outlying; better said, the observation 

for which, ( )pnpFDi −≥ ,5,0 , 

• Andrews-Pregibon  distance ( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
−⋅−=

pn
e

hAP i
iii

2
11 , where  observation i being truly    influential if 

( )
n

p
APi

12
1

+
−≤ , 

• ( )
( )

ii

p

rez

irez
i hs

s
COVRATIO

−
⋅⎥

⎦

⎤
⎢
⎣

⎡
= −

− 1
1 , where the observation i is considered as influential if 

( ) n
p

COVRATIO i
3

1 >−− . 
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The residuals together with other statistics are shown in the Tab. 5. The sum 

( ) 613,492
1

2 ==∑
=

−

n

i
iiePRESS  is considerably different from the sum 3883,254

1

2 =∑
=

n

i
ie  and their quotient 

93651,q =  is much higher than 1, this is why there are influential observations in the data set. The 4th, 14th 
and 16th observations are the most influential, because their differences between the classical and predicated 
residuals are the highest.   

 
Tab. 5.  Residuals, extreme and influential values. 

No. L L* ei eSi ei(-i) hii DFFIT Di APi |COVRATIOi-1| 

1 11,3 15,703 −4,403 −1,033 −5,108 0,138 −0,4137 0,0284 0,7912 0,122 

2 10,7 4,353 −3,653 −0,852 −4,313 0,153 −0,3614 0,0223 0,7997 0,356 

3 10,7 14,432 −3,732 −0,889 −4,574 0,184 −0,4221 0,0302 0,7664 0,362 

4 40,4 42,404 −2,004 −0,634 −4,473 0,552 −0,7048 0,0871 0,4341 2,036 

5 40,4 32,112 8,288 2,321 10,095 0,179 1,0830 0,1432 0,4808 0,812 

6 20,7 18,323 2,377 0,552 2,885 0,176 0,2552 0,0115 0,8047 0,736 

7 18 17,653 0,237 0,086 0,336 0,294 0,0555 0,0006 0,7056 1,379 

8 22,5 22,947 −0,447 −0,135 −0,937 0,523 −0,1411 0,0036 0,4763 2,501 

9 28,1 28,636 −0,536 −0,211 −1,921 0,721 −0,3401 0,0209 0,2780 4,970 

10 32,9 35,117 −2,217 −0,629 -3,980 0,443 −0,5612 0,0552 0,5400 1,450 

11 20,9 18,304 2,596 0,641 3,527 0,264 0,3843 0,0256 0,7127 0,839 

12 23,9 17,992 5,908 1,582 7984 0,260 0,9364 0,1300 0,5975 0,334 

13 11,6 9,718 1,882 0,449 2,438 0,228 0,2441 0,0106 0,7600 0,957 

14 9,2 17,329 −8,129 −2,653 −12,224 0,335 −1,8814 0,3924 0,3050 0,870 

15 12,6 11,77 0,83 0,197 1,082 0,233 0,1089 0,0021 0,7647 1,152 

16 9,3 6,438 2,862 0,87 5,724 0,500 0,8706 0,1289 0,4709 1,262 

17 8,4 7,012 1,388 0,374 2,306 0,398 0,3047 0,0167 0,5955 1,597 

18 14,2 15,557 −1,357 −0,372 −2,332 0,418 −0,3152 0,0178 0,5758 1,686 

Note: L* are fitted values of belt conveyors life based on the regression model 
 

The diagonal elements of the hat matrix are in the Tab. 5. The results show that 5 observations seem to 
be extreme ( 4290,hii > ). According to used statistics, in the set there are several influential observations 

( ( ) 1547,1>−iDFFIT , 2222,0>iD , 2222,0≤iAP , ( ) 11 >−−iCOVRATIO ). 
 

Analysis of the random component of the regression model 
 

For the regression model, we suppose that the random errors iε  are interdependent with normal 

distribution with zero mean value and with constant variance 2
εσ . The properties of random errors are: 

( ) 0=iE ε (mean value of random errors iε  is zero), ( ) 2
εσε =iD  (variance of random component iε  is 

constant, errors homoscedasticity), ( ) 0;cov =ji εε  for ji ≠  (mutual linear independence of random errors) 

and ( )2;0 εσε Ni ≈ , that means that random components iε  have normal variance. If the proposed regression 
model is appropriate, then the classical residuals ie should correspond to the properties of random errors iε .  

 
The graphical analysis of the residuals has been carried out through the diagrams of studentized 

residuals Sie  with respect to the values of regression function iy) , it means the point diagram [ ]Sii ey ;) . 
According to [13], if the residuals belong to the horizontal zone around zero, and in the interval ( )2;2−  there 
are almost all studentized residuals, and out of the interval ( )3;3−  the residuals appear only sporadically 
(under 1 %), then the placement of the residuals does not indicate the violation of assumptions about random 
component.  
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Fig. 2.  Fitted values vs. studentized residuals. Fig. 3.  Q-Q plot. 

 
The studentized residuals are concentrated around 0, and the more distant they are from 0, the more their 

frequencies decrease (Fig. 2). In the interval ( )2;2−  there are over 95 % of the values, so the diagram does 
not indicate the violation of assumptions about random errors.  

To verify the normality we use the graphical analysis based on so called diagnostic diagrams, i.e. we 
can use the Q-Q plot (Fig. 3), and also normality tests based on selected statistical tests (for example, 
Shapiro-Wilk, Pearson, Cramer von Mises tests etc.).  We test 0H : residuals are from normal distribution 
versus 1H : residuals are not from normal distribution. The test characteristic of Shapiro-Wilk test W is equal 
to 0,9664, two-sided test p-value is 0,7278. Since p-value ≥ α, we do not reject the null hypothesis 0H at 
the significance level 050,=α  (or 010,=α ) and we can assume that the distribution of random errors is 
normal. We have obtained the same result when using Cramér-von Mises test (p-value is 0,93116) 
and Anderson-Darling normality test (p-value is 0,9046). 

To verify the assumption about constant variance of random errors we will employ Goldfeld-Quandt 
test [13]. We test 0H : homoscedasticity of residuals versus 1H : heteroscedasticity of residuals. The set of 
balanced values is ascending and divided into 2 parts, where the sum of squares of studentized residuals 
squares is calculated. The value of the test characteristic is 1503,1=F . We reject the null hypothesis about 
homoscedasticity if ( )1;1 121 −−−−> − knknFF α . Since ( ) 27793315031 950 ,;F,F , =<= , at the significance 
level 050,=α we do not reject the null hypothesis about the constant variance of random errors. 
The homoscedasticity of residuals was verified also by Breusch-Pagan test, according to which, like in 
the previous test, we cannot reject the null hypothesis about constant variance of random errors (p-value is 
0,5286). 

Independence of random errors is verified through the coefficient of the 1st degree autocorrelation 1ρ  
and by means of the most frequently employed autocorrelation Durbin-Watson test characteristic. We use the 
residuals arranged according to the size of regression function, and we will use both, classical ie and 
studentized residuals Sie .  

The point estimation of the coefficient of the 1st degree autocorrelation is the selective autocorrelation 
coefficient for which is valid 178901 ,r = (classical residuals), or 106701 ,r S =  (studentized residuals). 

The test of statistical significance of the 1st degree autocorrelation serves to test the independence of 
random errors. We test 0H : 01 =ρ  versus 1H : 01 ≠ρ (or 0H : autocorrelation coefficient is not statistically 
significant; errors are mutually independent versus 1H : autocorrelation coefficient is statistically significant; 
error are interdependent, autocorrelated).  

We reject the null hypothesis at the significance levelα , if ( )nrr α≥1 , where ( )nrα  is tabular critical 

value. Because the studentized residuals ( ) 29901817890 050 ,r, , =<  (or ( ) 29901810670 050 ,r, , =< ). At 

the significance level 010,=α  is ( ) 432018010 ,r , = . The result of the test shows that the 1st degree 
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autocorrelation coefficient is not statistically significant and the assumption about the independence of errors 
can be considered as satisfied. 

Durbin-Watson test characteristic for classical residuals is 5591,WD =− , or 72751,WD =−  for 
studentized residuals. Generally, the values WD −  are from the interval 40, . In practice, we can follow 
the simplified rule saying that the value of the test characteristic WD −  close to 2 indicates 
the independence of random errors. According to [7], if the test characteristic value lies in the interval                 
(1,4; 2,6), the residuals do not show the autocorrelation. 

 
Conclusion 

 
Our paper describes the analysis of the classical regression model of the dependence of conveyor belt 

life on some parameters. Next possibility is to describe dependency of models, which are defined in articles 
[2, 3, 4, 5, 6, 8]. 

We employed the test of statistical significance of the regression model to verify if the proposed 
regression model is statistically significant. The model analysis shows that, thanks to the proposed model, we 
are able to explain the variability of the life variable L by means of selected parameters up 86,27 %. 13,73 % 
left are caused by the factors that are not included in this model, or by other explanatory variables, or random 
influences. 

Thanks to the test of statistical significance of the regression coefficient, we found out that 
the explanatory variables conveyor belt length l and transported quantity q are statistically significant 
and have a considerable impact on the conveyor belt life. The test results also show that the other parameters, 
such as conveyor belt width w, thickness of paint layer t and conveyor belt speed s can be excluded from 
the proposed regression model. The point estimation of the new linear model of the conveyor belt is 

iii x,x,,y 21 930100690908917 +−=) , where qx,lx == 21 . The new point estimation of the multiple 
correlation coefficient is 0,9238 and the adjusted coefficient of the determination is 0,9132. The explanation 
of the variability of the life variable L by means of two selected parameters is 85,3 %. 

The following part dealt with influential observations and assumptions of the classical linear regression 
model. The results of the random errors analysis of the proposed model confirm assumptions of normality 
and homoscedasticity of random errors. According to Durbin-Watson characteristic and autocorrelation 
coefficient we cannot reject the hypothesis about independence of random errors.  

The results of identification and diagnosis of extreme and influential values show that among 
the observed values there are several extreme and influential values that concern the regression model and 
that these can have a considerable impact on the model parameters and characteristics. Their omission in 
the model can considerably modify the estimations of the model parameters. It is important to realise that 
some errors might have occurred while measuring or collecting data or they may result from an incorrect 
design of the regression model or they are due to the combination of explanatory variables.  
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