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In the present-day geodetic practice, innovative technologies are increasingly gaining ground, but they also bring new possibilities for 

solving various geodetic tasks. It is mainly the ability to convey quick and precise surveying and recording of the spatial data which 
is advantageous of these technologies, making them more efficient in contrast with the traditional surveying methods.  

Surveying of irregular bodies’ surfaces in order to determine their volume can be performed on different levels of detail. This relates 
to the number of detailed survey points that capture the surface curve of the three-dimensional bodies, while also being connected with time 
requirements for their surveying. 

 Since the number of detailed survey points directly affects the precision of the volume determination, it is crucial – in order for 
optimizing the land survey – to evaluate the impact of the number of detailed survey points on volume changes when calculating the cubature 
of three-dimensional bodies. It is desirable to achieve such results where the selected number of detailed survey points ensures neglectable 
inaccuracies in comparison with the real values of the measured volume, together with significantly lower time requirements. 
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Introduction 
 

When surveying, the surveyor encounters the issue how to safely survey inaccessible rock faces, quarries 
and similar objects. There are several methodologies for surveying the surface profile of inaccessible rock faces 
that require proper selection of instrumentation and equipment. Individual methodologies differ in the principle, 
way of surveying, accuracy, level of the surveyed area approximation, method of data processing, and also 
varying requirements on surveying as well as computing devices. Mainly non-contact surveying systems – 
prismless and robotic total stations, photogrammetric cameras, terrestrial and aerial laser scanners find their 
application for hazardous conditions of a movement in such terrain (Pukanská et al., 2008). 

This paper is focused on methods of surveying by using robotic total station equipped with a reflectorless 
distance meter (without use of surveying prism) and with a feature of scanning. Electronic total stations with 
a function of scanning are quite common instruments these days. Similarly as with electronic total stations 
without this function, the methodology is based on the principle of spatial polar method for determining 
the position of detailed survey points. The difference between these two types of instruments dwells 
in the method of spatial data collection (surveying of detailed points). Whilst in the first case detailed points are 
being surveyed and recorded manually by morphologic distribution, with this type of instrument detailed points 
are recorded automatically in a square or possibly a rectangular grid, depending on the setup of survey details. 
The advantage of this methodology is fully automated process of surveying, and the disadvantages are both 
acquisition costs of this class of instrumentation and more strict requirements on the computer software, whereas 
these instruments are able to collect several tens of thousands of spatial points in a relatively short time (Rákay, 
2013). 

 
 
 
 
 
 
 
 
 
 
 

Fig. 1.  Lipovník and Spišské Podhradie quarries. A map of broader 
relations. 
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Surveying of areas of interest 
 
Irregular surfaces of rock faces that are present in Lipovník and Spišské Podhradie quarries (Fig. 1) were 

selected as testing locations for surveying and subsequent analysis of calculations of volumes of irregular bodies. 
 

Realisation of surveying in the Lipovník quarry 
 

The rock wall of the first storey of the Lipovník quarry was the subject of surveying. The rock wall was 
surveyed using robotic total station Trimble VX Spatial Station from two survey stations (5001 and 5002), 
positions of which was determined by the RTK method based on the GNSS technology (using Leica 
GPS900CS). The accuracy of spatial position of the surveyed point (Single 3D point accuracy using Trimble VX 
Spatial Station) in the scanning mode is 10 mm, as declared by the manufacturer. The accuracy of coordinates 
determined by RTK method (RMS accuracy with real time kinematic – RTK using Leica GPS900CS) is 10 mm 
+ 1ppm in a horizontal direction and 20 mm + 1ppm in vertical direction, as declared by the manufacturer. 
A geodetic connection of points of the oriented aligning base 5001 – 5002 was realized by Slovak spatial 
observation system – SKPOS (in analogy to (Bartoš et al., 2011; Gašinec et al., 2012)). Positions 
of the instrument survey stations, as well as range of surveying from individual stations are illustrated in Fig. 2. 

 

Fig. 1.  Positions of the instrument survey stations at the Lipovník quarry. 
 
The purpose of this survey was surveying of the quarry wall surface using a set of points arranged into 

a regular grid for determining the influence of density (number) of points on calculation of changes 
in the irregular body volume, and hence what is the impact of particularity when capturing irregular surface 
of the quarry wall on calculation of cubature of the body bounded by this surface. 

Because of the influence of central projection there is a deformation of a square grid of points defined 
by the grid of reference plane in its projection to the surface of surveyed object, so the survey of quarry wall was 
realized from 2 survey stations (5001, 5002) in order to eliminate this effect as much as possible (Bartoš et al., 
2011; Gašinec et al., 2012). 

Subject of testing, the surface of the rock wall of quarry, was divided into six (6) parts (Fig. 3) of equal 
acreage (100 m2). The quarry wall was surveyed using a square grid of points with a grid of 10x10 cm. 
The testing surface No.1 was located about 63m from the survey station No. 5001 and the average distance 
of surfaces No. 2 to No. 6 from the survey station No. 5002 was between 68 and 81 metres (Rákay, 2013). 

 

Fig. 2.  Arrangement of tested surfaces No. 1 to No. 6 on the first level of the rock wall in the Lipovník quarry. 
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Realisation of surveying in the Spišské Podhradie quarry 
 

The rock wall at locations where mining is still being performed was the subject of the survey. Irregular 
surface of the walls was surveyed similarly as in the Lipovník quarry, using robotic total station Trimble VX 
Spatial Station from two survey stations (5003 and 5004), positions of which was determined by the RTK 
method based on the GNSS technology (using Leica GPS900 CS). Positions of the instrument survey stations, 
as well as range of surveying from individual stations are illustrated in Fig. 4. 

 

Fig. 3.  Positions of the instrument survey stations at the Spišské Podhradie quarry. 
 

Surfaces of the rock walls of the quarry that had been divided into four (4) parts of equal acreage (100 m2) 
were the subject of the survey. The quarry wall was surveyed using a square grid of points with a grid 
of 10x10 cm. Parts No. 7 and No. 8 (Fig. 5) were located about 87m from the survey station No. 5003 and parts 
No. 9 and No.10 were surveyed from the survey station No. 5004 with the average distance of surveyed surface 
from the survey station of about 55 metres. Parts No. 9 and No. 10 were created with approximately 35 % 
overlap due to insufficient amount of survey data and in order to preserve the same surface area of all tested 
surfaces (100 m2) (Rákay, 2013). 

 

  
 

Fig. 4.  Arrangement of tested surfaces No. 7 to No. 10 on the rock wall in the Spišské Podhradie quarry. 
 

Processing of surveying results 
 

Description of real objects or phenomena tends to be difficult because of their complexity, therefore 
models, i.e. simplified representation of reality, are formed, the purpose of which is to examine and explain 
the basic principles (Sabolová et al., 2012). To perfectly project a rough topographic surface it is necessary 
to survey a large number of detailed survey points. The Tab. 1 shows the number of points corresponding 
to a point grid with a grid size of 10x10 cm to 100x100 cm. The Fig. 6 shows that together with the requirement 
of increasing detail of an irregular surface survey (i.e. getting closer to represent its real shape) also the number 
of required detailed survey points exponentially increases. 

Highly realistic terrain relief image is obtained by detailed surveying that though closely relates to higher 
demands of the spatial data collection along with higher requirements on the computer hardware for processing 
the survey results. In terms of optimization of the entire surveying process it is important to find such a level 
of surveying detail that would meet the required precision criteria at as small time losses as possible. 
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Sets of data with a grid size of 20x20 cm, 30x30 cm to 100x100 cm, which were subsequently processed 
in the RealWorks Survey software, were created by a selection of individual points for every single part 
of the quarry wall surface from a set of points with a grid size of 10x10 cm, within the survey of wall surfaces 
of the Lipovník and Spišské Podhradie quarries and their division into testing surfaces No. 1 to 10. 
Approximating surfaces represented by networks of triangles (Fig. 8) were created from sets of points 
of the square grid (Fig. 7). 

 
Tab. 1   Numerical representation of dependence 
of the number of detailed survey points 
on the square grid size 

Dimension of  
the points network 

grid mesh [cm] 

Number of detailed 
points in the area  

of 100 m2 
10x10 10 201 
20x20 2 601 
30x30 1 225 
40x40 676 
50x50 441 
60x60 324 
70x70 256 
80x80 196 
90x90 169 

100x100 121 

  

  Fig. 5.  Dependence of the number of detailed survey points on the square grid size.

 

Fig. 6.  Set of points of the surface No.6 with a density of 10x10 cm and 100x100 cm [3]. 

  
Fig. 7.  Approximation of surface No.6 by a network of triangles with a density of points of 10x10 cm and 100x100 cm, 

respectively [3].  
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Calculation of the cubature 
 

A level of approximation of the surface that bounds these bodies affects the determination of irregular 
bodies volume in a decisive extent. Whereas the very rock face surface does not present an irregular body, 
changes in the volume were obtained as difference in calculated volumes versus the reference plane located 
about 3 m behind individual surface approximations. In Fig. 9, the irregular surface is shown in red colour, 
the plane for a volume comparison is shown in green colour, and the projection is defined in pale green (almost 
transparent) colour. In this specific case, the volume was calculated between the red irregular surface and its 
orthogonal projection to the green (reference). 
 

 
Fig. 8.  Calculating the volume between an irregular surface and the reference plane. . 

 
Results of the volume calculations and subsequent volume changes are presented in the following tables 

(Tab. 2 and Tab. 3) for surfaces No. 1 to No. 10. 
 

Tab. 2.  The values of volumes and volume changes calculated for solid bodies bounded by surfaces No. 1 to No. 5. 
 Surface No. 1 Surface No. 2 Surface No. 3 Surface No. 4 Surface No. 5 

Network 
dimension 

[cm] 

Volume 
 

 [m3] 

Change in 
volume 

[m3] 

Volume 
 

 [m3] 

Change in 
volume 

[m3] 

Volume 
 

 [m3] 

Change in 
volume 

[m3] 

Volume 
 

 [m3] 

Change in 
volume 

[m3] 

Volume 
 

 [m3] 

Change in 
volume 

[m3] 
10x10 466.93 0.00 720.80 0.00 356.08 0.00 364.69 0.00 613.80 0.00 
20x20 463.57 3.36 717.82 2.97 354.73 1.35 363.49 1.21 612.47 1.33 
30x30 464.57 2.36 718.83 1.97 355.50 0.58 363.13 1.56 612.34 1.46 
40x40 460.68 6.25 716.37 4.43 354.53 1.54 362.89 1.80 610.44 3.36 
50x50 462.88 4.05 715.68 5.12 353.96 2.12 362.52 2.17 611.40 2.40 
60x60 459.89 7.04 712.49 8.30 355.89 0.19 363.43 1.27 612.19 1.61 
70x70 461.48 5.45 712.92 7.88 352.78 3.30 363.44 1.25 610.83 2.97 
80x80 459.58 7.36 710.38 10.41 350.65 5.43 361.87 2.82 608.69 5.10 
90x90 456.31 10.62 715.04 5.75 356.62 -0.54 360.05 4.64 610.36 3.44 

100x100 458.64 8.29 706.69 14.10 353.16 2.92 360.02 4.68 608.88 4.91 
 

Tab. 3.  The values of volumes and volume changes calculated for solid bodies bounded by surfaces No. 6 to No. 10. 
 Surface No. 6 Surface No. 7 Surface No. 8 Surface No. 9 Surface No. 10 

Network 
dimension 

[cm] 

Volume 
 

 [m3] 

Change in 
volume 

[m3] 

Volume 
 

 [m3] 

Change in 
volume 

[m3] 

Volume 
 

 [m3] 

Change in 
volume 

[m3] 

Volume 
 

 [m3] 

Change in 
volume 

[m3] 

Volume 
 

 [m3] 

Change in 
volume 

[m3] 
10x10 571.77 0.00 430.72 0.00 647.85 0.00 592.39 0.00 571.79 0.00 
20x20 572.37 -0.59 430.51 0.21 646.11 1.74 595.49 -3.10 572.68 -0.88 
30x30 573.75 -1.98 431.49 -0.77 648.29 -0.44 595.24 -2.84 572.09 -0.30 
40x40 572.71 -0.94 431.11 -0.39 645.95 1.91 595.38 -2.98 573.10 -1.31 
50x50 572.66 -0.88 432.34 -1.62 649.06 -1.20 595.32 -2.93 573.04 -1.25 
60x60 573.58 -1.81 431.26 -0.54 646.80 1.05 595.64 -3.25 573.03 -1.24 
70x70 573.21 -1.43 429.69 1.02 650.38 -2.52 595.96 -3.57 572.98 -1.18 
80x80 571.71 0.06 428.20 2.52 646.64 1.21 594.34 -1.95 573.15 -1.36 
90x90 570.69 1.09 428.71 2.00 649.29 -1.44 594.43 -2.04 572.70 -0.91 

100x100 569.97 1.80 428.38 2.34 647.27 0.59 595.14 -2.75 573.77 -1.98 
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Graphical interpretation of results 
 

Searching for and studying dependencies between two or more statistical characteristics (variables) is one 
of the basic tasks of mathematical statistics with wide use in technical and social sciences. A regression analysis 
deals with these problems. Its main task is to represent this dependence using a regression function, which 
subsequently allows to predict values of dependent variable based on values of one or more independent 
variables. Simple regression deals with perceiving the course of dependency of a dependent variable y (values 
of  which are stated as yi) on the independent variable x (values stated as xi). The very first step in the process 
is to collect the data, i.e. pairs of corresponding values (xi , yi), where i = 0, 1, ..., n. The next step is to plot 
the points [xi , yi] (where i = 0, 1, …, n) into a rectangular system of coordinates. Thus we can obtain a set 
of points from which, in most cases, we are able to presume what type the curve that most properly reflects 
dependence of y over x would be. 
 

Fig. 9   Simple regression 
 

The purpose of regression (equalisation) of argument y is to find such regression function ỹ = f(x), which 
would most appropriately expresses dependence of y on x. Graphically, it means to find such a regression line 
(curve, straight line), which will be placed most closely to the individual points [xi , yi]. 

Selection of an appropriate type of regression model based on a plotted dot diagram is not always a simple 
task. Several typical courses can be drawn up (polynomial types, power types, exponential types, hyperbolic 
types, logistic types...), and subsequently recalculated to which extent this found regression curve represent 
the dependence of y on x. 

The dot diagram of obtained results shows the trend of direct dependency therefore it can be described 
by a polynomial of the 1st degree, i.e. a straight line: 

xaay~ 10 += .                                                                                                       (1) 
As an optimal expressing of a theoretical relation y = f(x) can be considered one that satisfies the minimum 

condition of objective function Φ, created on the principle of the least squares method (LSM). It is the search for 
the minimum of the sum of squares of deviations iii y~yv −= . 
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Hence we get the so-called criterion function of m+1 unknown quantities. It is a non-decreasing and non-
negative function, so its stationary point is its minimum. Therefore, first partial derivations according to all ak 
(k = 0, 1, ..., m) are set equal to 0. Subsequently, we get a system of two equations that can be solved using 
a matrix algebra in such a way, that we firstly create matrices: 
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Afterwards, the system of normal equations can be defined as: 
( ) Y´.XA.X´.X = .                                                                                                 (4) 

Hence, the matrix of unknown parameters A can be defined: 

)1,(),2(
1

)2,(),2(1

0

)1,2(
´..)´.(

nnnn
YXXX

a
a

A −=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=                                                                     (5) 

and found values of a0, a1 are substituted into the equation (1) (Turčan, et al., 2002). 
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Evaluation of achieved results  
 

The Fig. 11 graphically illustrates the dependence of the cubature change of volumetric elements created 
byorthogonal projections of tested surfaces No. 1 to 10 on the area of the reference plane placed about 3 m 
behind the individual surfaces. Vertical axis represents volume change in m3, the horizontal axis represents 
the size of intervals of the square grid network of the distribution of detailed survey points on the rock wall 
surfaces, representing the course of irregular surfaces No. 1 to 10. 

Using the regression function x y 10376,007023,0~ +=  (calculated as the average of individual regression 
functions calculated separately for each surface - see Tab. 4), the Fig. 11 graphically illustrates average changes 
in the calculated volume of these types of irregular bodies depending on the level of detail of measurements. 
As it follows from Tab. 2 and Tab. 3, the volume element calculated at a density of distribution of detailed 
survey points in a grid of 10x10cm, whose value was considered as reference due to the largest number 
of detailed survey points, usually has the largest numerical value of the volume. Therefore, the numerical value 
of volume elements generally decreases gradually with increasing interval of square grid to 20x20 cm, 30x30 cm 
to 100x100 cm. As illustrated in the Fig. 11, it is clear that the average change in calculated volumes between 
scanning in a level of detail 10x10 cm and 100x100 cm is about 4 m3 over the area of 100 m2. 

 

 

Fig. 10.  The regression function y = 0,07023 + 0,10376.x reflecting an average dependence of the volume change on the size of the square 
grid network representing the surface of the rock wall surfaces. 

 
Tab. 4.  Coefficients of the regression function y = a0 + a1x for the illustration of dependence of the volume change on the size 

of the square grid network representing the surface of irregular bodies. 
Coefficients of 

regression 
function 

Surface 

No.1 No.2 No.3 No.4 No.5 No.6 No.7 No.8 No.9 No.10 average 

a0 0,1457 -0,3226 0,1671 -0,0944 0,1662 -0,8299 0,6839 -0,3737 1,0218 0,1381 0,0702 
a1 0,4531 0,3063 0,0614 0,1058 0,0533 0,0540 -0,0838 0,0299 0,0226 0,0347 0,1037 

 
 

Conclusion 
 

Determination of volume of irregular bodies (objects) is a common task mainly in quarrying of industrial 
minerals, in mining geology and resources calculation, geological research, design and construction of various 
mining and engineering works and objects, mainly transportation and water-management objects, where volume 
of real or imaginary bodies (objects) bounded by regular or irregular areas has to be determined. The overall 
accuracy of volume determination is conditioned predominantly by surveying and processing work errors. 
The approximation error has the greatest influence on the accuracy of volume determination. 

The accuracy of volume determination depends on the following main factors: 
• quantity and accuracy of geodetically defined points representing the surface course of the irregular body, 
• mathematical expression of the irregular body surface, 
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• a method of irregular body geometrization, i.e. its decomposition to a set of various types of elementary, 
geometric bodies, as well as the use of method for volume calculation. 
 
In conclusion, the accuracy of volume determination of irregular bodies is dependent on the degree 

of exploitation of surveying, modelling and computational methods capable of approximating the irregular body 
and thus represent its actual, real shape. Of course, this assumes an optimal investment of energy and resources 
(also financial) into the achievement of results with required accuracy. In regard to the financial aspect, which 
is nowadays often one of the decisive factors, it is crucial to be well-informed about the characteristics 
and applicability of individual methods, as well as about their requirements for the quality of input data. 
By optimizing these factors (adequate density of the surveyed points, suitable selection of the modelling method 
and compliance with its marginal conditions), we are able to ensure that the acquired results will have a desired 
significance and the price paid for their acquisition is economically favourable. 
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