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Calibration of Digital Amateur Cameras for Optical 3D Measurements 
 With Element-Wise Weighted Total Least Squares (EW-WTLS) 

and Classical Least Squares: A Comparison 
 
 

Sedat Doğan1 
 

 

In order to improve the precision and accuracy of the calibration results, there are two general effects should be considered. One 
of them is the definition of the mathematical model of the calibration problem with respect to the physical nature of the problem, 
and the other one is the statistical model of the estimation of the calibration parameters. The estimation procedure is important for both 
dealing with the uncertainties of the observed measurements    for computing the parameters and the numerical solution of the model. 
The classical least squares (LS) estimation model assumes that only the observation vector is erroneous while the data matrix is error free 
even its elements are the functions of the erroneous observations. These propagated errors in the data matrix elements stay as uncertainties 
in the classical LS model. The main purpose of this paper is to deal with those uncertainties in the camera calibration problem, by using 
the EW-WTLS estimation method and compare the results with the classical LS method. Both methods give almost the similar results. But 
at least in theory, the EW-WTLS estimation technique may be said to be more realistic than LS, by the means of its statistically more much 
realistic model. 
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1. Introduction 
 

Accurate and precise camera calibration is one of the fundamental problems for precise measurements using 
images. Camera calibration procedure aims to find the intrinsic and extrinsic parameters of the camera. Since 
major concern of photogrammetry is with precise measurements using images, calibration of the image sensors 
has been and still is, of major concern [1]. One aspect of the camera calibration is to estimate the internal 
(intrinsic) parameters of the camera. These parameters determine how the image coordinates of a point 
is derived, given the spatial position of the point with respect to the camera [2]. Internal or intrinsic parameters 
of a camera are also referred as “internal orientation parameters” in photogrammetry community [3]. These 
internal parameters are necessary to define the position of the bundles of image points with respect to the camera 
and thus to define the image coordinates of the points which are projected onto the image plane by the bundles 
of light rays reflected from corresponding object points. The estimation of the geometrical relation between 
the camera and the scene, or between different cameras, is also an important aspect of calibration [2]. These 
external geometric relations are defined with the parameters so called external (or extrinsic) parameters. 
In photogrammetry, these external parameters are called as “external orientation parameters” [3]. The accuracy 
and the precision of the calibration parameters directly affect the accuracy and the precision of 3D measurements 
from images.  

In order to improve the accuracy of the calibration parameters, two general effects should be considered. 
One of them is the definition of the parameters with respect to their physical natures, namely the mathematical 
model of the camera, and the second one is the estimation procedure of the parameters of the defined model 
within a statistically optimal way based on the nature of the errors of the input data. While the first group 
of the effects, i.e. the definition of the parameters and the relations between them, is important to represent 
the camera model as close as to physical reality; the second group’s effects, i.e. the estimation procedure 
is important for both dealing with the uncertainties of the measurements performed for computing 
the parameters, and the numerical solution of the model. 

In general, the mathematical model of the camera calibration problem is defined by either a linear bundle 
model or by a nonlinear bundle model which of two are both based on the ideal pinhole camera model. Linear 
models are usually preferred by the computer vision community, since linear models do not require initial 
approximations for the parameters, and thus more appropriate for the computer vision tasks. On the other side, 
the photogrammetry community prefers the non-linear bundle adjustment technique, which defines the imaging 
geometry with nonlinear co-linearity equations of corresponding object and image points. However, this non-
linear model requires initial approximations of the unknown parameters. Initial approximations are computed 
from either linear models such as direct linear transformation (DLT) or any other closed form analytical 
solutions of the perspective projection. After the initial approximations of the parameters have been found, 
an iterative estimation algorithm is performed to find the final optimized values of the parameters. Bundle 
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adjustment algorithm performed in such a way is very flexible and much more precise method than others for 3D 
photogrammetric measurement and reconstruction tasks from stereo images. Here the flexibility of the model 
means that any satisfactory number of intrinsic parameters representing the lens distortions and some other 
systematic error types may be inserted into the bundle adjustment model. Furthermore, tie points can also 
be used to improve the redundancy of the model.  

This paper gives the solution of the camera calibration problem with the nonlinear bundle adjustment 
approach, and uses the EW-WTLS estimation technique for the calibration parameters. Before estimation 
procedure, variances of the all data are computed and then proper weighting matrices for each of the independent 
rows of the data matrix are found. The error free columns and any other error free elements of the data matrix are 
not modified (or corrected). And thus the EW-WTLS estimation method models the calibration problem more 
realistically by the means of the statistical model of the errors. This advanced theoretical basis of the EW-WTLS 
model generally causes someone to expect more precise and accurate results from EW-WTLS than LS. But 
as will be seen in the later sections of the paper, this kind of expectations are not necessary since both methods 
are derived from the almost same roots, as argued by [4]. For a detailed reading of the various estimation models 
originated from the least squares estimation approach, the reader may refer to [5]. Furthermore, it will also 
be seen that the estimation results of EW-WTLS and LS are almost the same by the means of precision 
and accuracy computed from the check point coordinates. But however, even two methods give similar 
precisions, there are slight differences between EW-WTLS and LS estimated parameter values. These 
differences mainly arise from the difference of the underlying statistical models. Thus it may be said that at least 
from the theoretical point of view, the EW-WTLS results with their slight differences from LS, must be more 
realistic and so these results may be preferred as the final values of the parameters. But notice that the more 
realism of the statistical model does not mean better precision and accuracy. In the next section, an overview 
of the state of the art of the various total least squares (TLS) models and camera calibration problem 
in the literature is given.  

 
1.1 TLS Methods and Camera Calibration: The State of the Art 
The TLS method was firstly introduced by Golub and Van Loan [6]. This TLS technique solves an over-

determined system of equations of the form  ≈ ࢞, where  א जൈ,  א जൈௗ are given data and                            
࢞ א जൈௗ is unknown parameter vector/matrix. Here m is the number of the equations and n × d is the number 
of unknowns. If m > n, there is no exact solution for x, so an approximate solution with an optimization prob lem 
is searched [6-8]. TLS is essentially a generalization of the least squares (LS) method by assuming that the data 
both in  and  are perturbed, i.e. erroneous. In the classical LS, only the data in  are assumed to be perturbed 
and its optimization model is given by equation (1).  

 
ሼ࢞ෝ௦, ሽ࢙∆ ൌ  ԡ∆ԡி ∆,࢞࢞ ݐ ݐ݆ܾܿ݁ݑݏ    

  ൌ    (1)           ∆
 
In the above equation, the optimization criterion is defined so that it corrects the data ۰ as little as possible 

in the sense of Frobenius norm. The corrected system of equations ۰ = ܠۯ, ۰ ൌ  ۰  ∆۰ has exact solution [8]. 
When considering the real problems, the data matrix ۯ has also data elements which are either directly 
the measurements themselves or the functions of the measurements. Then intuitively it is clear that the data 
matrix ۯ is also perturbed by the random measurement errors.  This real case is the TLS case. TLS model 
searches for the minimal corrections Δۯ and ∆۰ on the given data ۯ and ۰. Then the corrected system 
is obtained as ۯܠ ൌ  ۰, ۯ ൌ ۯ  Δۯ and ۰ ൌ ۰  ∆۰ and now it has unique solution with the optimization 
criterion given by the Frobenius norm as follows: [8]. 

 
ሼ࢞ෝ௧௦, ,௧௦∆ ௧௦ሽ∆ ൌ  ԡ∆∆ ;ԡி ݐ ݐ݆ܾܿ݁ݑݏ ሺ  ௫,∆,∆࢞ሻ∆

  ൌ    (2)           ∆
 

is obtained, and ܠො୲୪ୱ is the estimated parameter vector.  
In order to solve the TLS optimization problem given by equation (2), some reasonable assumptions are 

required about the unknown corrections (or perturbations) Δۯ and Δ۰ respectively. The differences between 
various TLS models and their solution approach mainly arise from the assumptions made on the nature 
of the data perturbations. Since the perturbations can be considered as errors deviating the data matrices from 
their unknown true values say ۯ and ۰, the assumptions are constructed on the distribution of the errors 
in a proper manner. 

The basic TLS problem introduced by Golub and Van Loan in [6] assumes that the errors are randomly 
distributed by zero mean and with a covariance matrix which is multiple of the identity matrix. Under this 
assumption, the basic TLS assumes that all elements of ۯ and ۰ are perturbed and so it modifies the elements 
to make corrections. Robust and efficient methods exist for the solution of this simplest case of TLS based 
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on the singular value decomposition (SVD). In this simple form, the TLS solution is given analytically in terms 
of the d smallest right singular vectors of the augmented data matrix ۲ ൌ  ሾ ۰  ۯ ሿ [6-10]. 

In the most of the real problems, the errors in the data matrix ۲ are not identical and not have common 
variances. For example, in linear regression models, one column of ۲ which corresponds to intercept parameter 
is constant, namely error free. In similar way, in the camera calibration model of the bundle adjustment problem, 
two columns of the data ۲ are constants namely, known exactly and so error-free. In such general cases, 
the fixed columns should not be modified. Since the variances of the fixed columns are zero, they have no error 
distribution function. In this case, a more general TLS model is used not to modify the fixed columns. These 
constant columns of  ۲ are linearly dependent to others and so a rank reduction process should be performed 
to find an exact solution. This rank reduction problem may be thought as a subspace approximation problem  
[11-13]. If the rest of the erroneous columns of ۲ have an iid error distribution with a common variance, then 
this is called mixed LS-TLS problem [7].  

It is clear that the error distribution assumption is the same as the basic TLS for the erroneous columns 
of the mixed LS-TLS. In order to deal with the fixed columns of ۲, there are various solution proposals 
in the literature such as [5, 7, 14, 15]. Another proposal on more general constrained subspace perturbations has 
been given by [16]. If the error distribution model of the mixed LS-TLS is generalized to the case of correlated 
errors for the erroneous columns, then this more general case is called generalized TLS (GTLS). i.e., the data 
matrix has one or more fixed columns and its perturbed (non-fixed) columns have an error distribution with 
a common covariance matrix. Solution of the GTLS is given in detail in [7]. A detailed comparison of GTLS 
and LS is given in [17]. This paper gives also the use of the GTLS in computer vision. However the GTLS still 
has a problem for some real applications. Because the GTLS assumes a column is fixed only if the all elements 
of that column are constant. Otherwise, the rest of the elements outside the fixed columns are assumed perturbed, 
even some of them are really constants. For example assume that the data matrix ۲ has two exactly fixed 
columns and three perturbed columns. Let some of the elements of the three perturbed columns be constant 
while the others are perturbed. In this case the GTLS modifies those constant elements too as if they were 
perturbed. Then this situation is not realistic and in this case the error distribution is not identical anymore. 
The GTLS model assumes that the errors of ۲ are row-wise independent and correlated within the rows with 
identical covariance matrix [7, 10]. This GTLS still does not capture the errors which are row-wise independent 
and have non-identical covariance matrices within a row. 

Further generalization of the GTLS to capture the case when the elements of ۲ are independent but not 
identically distributed with different error covariances is proposed in [18] and it is called weighted total least 
squares (WTLS). There are various proposed algorithms for the solution of WTLS problems. We refer the reader 
to [19] for reading the extensive overview of TLS methods, their historical progressions and various parameter 
representations, as well as WTLS. WTLS can solve the most general cases of the TLS with various approaches 
by using effective solution proposals presented in the literature [8, 10, 19-22]. In the geodesy literature, there are 
also various proposals for the solution of the TLS models such as [4, 5, 23, 24]. There are also very interesting 
discussions on the comparison of TLS and classical LS techniques in the geodesy literature [4, 25]. These last 
two papers asserts that it is unnecessary task to compare the TLS and LS methods, since they are both based on 
standard LS approach. 

In this paper, element-wise weighted TLS (EW-WTLS) method was used to solve the camera calibration 
problem. The reason for using the EW-WTLS is that the camera calibration problem mostly fits to this model. 
The EW-WTLS assumes that the rows of the data matrix ۲ are independent from each other and each element 
in any row may have different variance than others as well as zero variance if it is constant namely, error-free. 
The elements of the same row may also have column-wise correlations with each other. In the case of the camera 
calibration problem, the rows of the data matrix ۲ correspond to measurements and their some functional values. 
The measurements are independent from each other and so are the rows of the data matrix. Each row has its own 
covariance matrix, which represent the variance-covariance information between this row’s elements. 
In the present paper, the covariance matrices of the each row of the data matrix are diagonal matrices, implying 
that there are no correlations between the elements of the same row. Because, there no reason found to assume 
that those elements are correlated since those elements are functions of the independent observations. Before 
the estimation procedure, proper weight matrices for each row are computed from their covariance matrices. 
The details are given in section 3.  

TLS models for camera calibration problems have been studied and discussed in the literature 
of the computer vision community but all of them have used the linear homography or linear bundle models for 
the mathematical model of the camera calibration.  But however, still there is not any solution performed with 
the EW-WTLS method [12, 13, 17]. There are no TLS or EW-WTLS studies by using nonlinear bundle 
adjustment model in computer vision community. On the other side, there are only two studies that use the TLS 
methods in photogrammetry. One of them gives space resection (also called triangulation) solution with basic 
TLS and assumes that intrinsic parameters are known [26]. Since the intrinsic parameters are assumed 
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to be known in this study, it is not a camera calibration problem. The other TLS study in photogrammetry has 
been used for image registration problem [27]. 

 
2. Mathematical Models of Self Calibration and TLS Estimation 

 
2.1 Self Calibration Model 
The calibration model of self calibration with bundle adjustment is based on the co-linearity equations 

derived from the ideal pinhole camera model. The main problem is to define the systematic error sources which 
cause the physical realization of the model to deviate from its ideal case. The mathematical model of the well 
known co-linearity equations is as follows: 

ξ ൌ ξ െ ܿ భభሺିబሻାమభሺିబሻାయభሺିబሻ
భయሺିబሻାమయሺିబሻାయయሺିబሻ

               (3.a) 

η ൌ η െ ܿ భమሺିబሻାమమሺିబሻାయమሺିబሻ
భయሺିబሻାమయሺିబሻାయయሺିబሻ

          (3.b) 

where ξ ,η are the image coordinates of an object point P, ξ ,η are the image coordinates of the principal 
point, c is the camera constant and approximately equal to the focal length and X, Y, Z are the object coordinates 
of the object point P. X, Y, Z are the object coordinates of the projection center of the camera and these are 
different for each of the images together with the r୧୩ parameters. Here r୧୩ are the elements of the orthonormal 
rotation matrix ܀ of the corresponding image with ܀ א  जଷൈଷ. The r୧୩ entries of the rotation matrix ܀ are some 
trigonometric functions of three rotation angles ω, φ, κ which are the rotations of the camera coordinate system 
with respect to the object coordinate system and are they the successive rotations about the X, Y and Z axes 
respectively. Instead of these axial rotations, one could use Euler angles or quaternions as well. 

In equations (3.a) and (3.b), ξ,ηand c are the intrinsic parameters of the camera (or of the images taken 
with it). X, Y, Z, ω, φ, κ are the extrinsic parameters. The orthonormal rotation matrix is a proper rotation 
matrix. In this paper, the following rotation matrix has been used. 

܀ ൌ 
cosφ. cosκ െcosφ. sinκ sinφ

cosω. sinκ  sinω. sinφ. cosκ cosω. cosκ െ sinω. sinφ. sinκ െsinω. cosφ
sinω. sinκ െ cosω. sinφ. cosκ sinω. cosκ  cosω. sinφ. sinκ cosω. cosφ

    ൩          (4) 

The co-linearity equations given by the equations (3) represent the ideal pinhole camera model. However, 
this ideal model differs from the ideal case due to the distortion effects of the optical system of a real physical 
camera. In addition to the lens distortions, the sensor system may also lead to distortions in some degree. Lens 
distortions of the real cameras cause the light rays (in other words projection rays) to change their linear paths 
before reaching to the sensor plane (projection plane/image plane). Deviation of any light ray from its ideal path 
results in some changes of the image coordinates of the point it projects on to the image plane.  For accurate 
and precise measurements, the deviations from the ideal case should be computed and the image coordinates 
should be corrected by eliminating those changes properly. Let ∆ξ and ∆η be the corrections of the distortion 
effects for image coordinates ξ and η of an image point respectively. Then the equations (3) can be re-written 
as follows:  

௫݂ ൌ ൫ξ െ ξ൯ ൌ െܿ ೣ
ே

 ∆ξ           (5.a) 

 ௬݂ ൌ ൫η െ η൯ ൌ െܿ 

ே
 ∆η           (5.b) 

where, Z୶ and Z୷ are the numerators of the equations (3.a) and (3.b) respectively and N is the denominators 
of those equations. In equations (5), ξ and η coordinates of an image point are corrected by the corrections 
∆ξ and ∆η. Here, ∆ξ and ∆η are assumed to be resulted from the additive systematic effects of the lenses 
and the sensor system. To model the systematic effects, namely the systematic errors, there are various proposals 
in the literature such  as [1, 28-30].  

The main and the most important systematic error sources are radial distortion and eccentricity 
of the lenses. Furthermore there are affine effects arise from the improper mounting of the optical system relative 
to the sensor plane. In the proper case, the lenses must be parallel to the sensor plane otherwise, projective 
distortions occur on the scanned image. Advanced digital cameras such as SLR and DSLR, almost satisfy this 
condition so, for them these effects can be defined with two affine parameters. But however, cheaper digital 
cameras may have a considerable projective distortion so for them more parameters can be used to model these 
mentioned effects [30]. According to the brief explanations above, the corrections of the image coordinates may 
be expressed as follows: [31]. 

∆ξ ൌ ∆ξௗ.  ∆ξ.  ∆ξ.           (6.a) 
∆η ൌ ∆ηௗ.  ∆η.  ∆η.           (6.b) 
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where, the subscripts “radi.”, “ecc.” and “aff.” denote the intrinsic parameters those are radial lens distortion, 
eccentricity distortion and the affinity effects respectively. Since ξ,η, c are captured directly at the end of 
the estimation process, their changes are numerically zero in equations (6) and so they are omitted in the above 
equations. Brown defines in [28] 29 parameters for the systematic errors but 10 of them are suggested for 
the digital cameras as follows:  

With the abbreviation rଶ ൌ ξҧଶ  ηതଶ where ξҧ ൌ ξ െ ξ, ηത ൌ η െ η; 

∆ξௗ. ൌ ଶݎҧሾ݇ଵߦ  ݇ଶݎସ  ݇ଷݎሿ           (7.a) 

.ௗߟ∆ ൌ ଶݎҧሾ݇ଵߟ  ݇ଶݎସ  ݇ଷݎሿ           (7.b) 

where kj (j=1, 2, 3) are the radial distortion coefficients. 

∆ξ. ൌ ൫ݎଶ  ҧଶ൯ߦ2 ଵܲ  ҧߟҧߦ2 ଶܲ           (8.a) 

.ߟ∆ ൌ ҧߟҧߦ2 ଵܲ  ሺݎଶ  ҧଶሻߟ2 ଶܲ           (8.b) 

where, P1 and P2 are the eccentricity coefficients, and 

∆ξ. ൌ െܾଵߦҧ   ܾଶߟҧ            (9.a) 

.ߟ∆ ൌ ܾଶߦҧ             (9.b) 

where, b1 is affine scale and b2 is the non-orthogonality effect of the image coordinate axes. Here both these two 
parameters are referred as affine parameters. The reader is referred to [1, 3, 28, 30, 31] etc. for the derivation 
of the above equations. The complete set of corrections as a whole is written as follows: 

∆ξ ൌ ଶݎҧ݇ଵߦ  ସݎҧ݇ଶߦ  ݎҧ݇ଷߦ  ൫ݎଶ  ҧଶ൯ߦ2 ଵܲ  ҧߟҧߦ2 ଶܲ െ ܾଵߦҧ   ܾଶߟҧ     (10.a) 

∆η ൌ ଶݎҧ݇ଵߟ  ସݎҧ݇ଶߟ  ݎҧ݇ଷߟ  ҧߟҧߦ2 ଵܲ  ሺݎଶ  ҧଶሻߟ2 ଶܲ  ܾଶߦҧ     (10.b) 

If the systematic corrections ∆ξ and ∆η are substituted in equations (5), the general non-linear camera 
calibration equations are obtained. This general calibration model contains ten intrinsic parameters and for each 
image six extrinsic parameters. If there are s images taken for calibration from the same camera, then the total 
number of unknown calibration parameters is (10 + 6 × s), because the ten intrinsic parameters are the same for 
all images since they were taken with the same camera. On the other side, each image has its own six extrinsic 
parameters which represent the orientation of each image’s camera coordinate system with respect to the object 
coordinate system. These external parameters are the rotation angles ω୧, φ୧  and κ୧  between each camera position 
and the object coordinate system. Rest of the three parameters X୧, Y୧,Z୧ are the object coordinates 
of the projection center of the image i with i=1,2,…,s. 

This general calibration model may also be augmented by using tie-points, which are the points seen at least 
in two images and their object coordinates are unknown. These tie points are useful especially to strengthen 
the relative orientation of images by the means of their co-linear lines must intersect in the object space and cited 
on the epipolar plane. This intersection constraint implicitly improves the power of the relative orientation 
of the images. Although one tie point brings three unknowns which are its object coordinates, it increases 
the redundancy of the model since a tie point provides at least four observation equations. Then if a tie point 
is seen in three images, then since there are six image coordinates of that point are measured, this tie point brings 
three unknowns and six observation equations. If the number of tie points used for calibration is t, then the total 
number of unknowns of the model becomes (10 + 6 × s + 3 × t). 

Equations (5) are nonlinear in terms of the unknown calibration parameters. Before the optimization 
procedure, these equations should be linearized. Taylor series expansion may be used for the linearization about 
the approximate values of the unknowns. Then an iterative solution of the optimization problem is applied until 
some predefined stopping criterions are met. Linearized equations are in the following form: 

f୶ ൌ ൫ξ െ ξ൯ ൌ f୶ ቀc, ξ
 ,η 

 , bଵ
, bଶ

,  kଵ
, kଶ

, kଷ
 , Pଵ

, Pଶ
, X୧

  , Y୧
  , Z୧

  , ω୧
, φ୧

, κ୧
, X୲୧ୣౠ

 , Y୲୧ୣౠ
 , Z୲୧ୣౠ

 ቁ 
ப౮
பୡ

dc  ப౮
பξబ

dξ  ڮ  ப౮
பభ

dPଵ  ப౮
பమ

dPଶ  ڮ  ப౮
பబ

dZ  ப౮
பன

dω୧  ڮ  ப౮
பச

dκ୧  ப౮
பX౪_ౠ

dX୲୧ୣ_୨   ڮ 
ப౮

ப౪_ౠ
dZ୲୧ୣ_୨    higher order terms              (11) 

f୷ is linearized by the same way as equation (11). Higher order terms are ignored. Here, superscript zeros 
represent the initial approximate values of the unknowns, i =1, 2,…,s and s is the number of the images used for 
calibration. Furthermore, j=1,...t is the index of the corresponding tie points. The partial derivatives are given 
explicitly in [3]. Let ܠ be the unknown parameter vector as follows:  

ܠ ൌ ൣdc  dξ dη dbଵ dbଶ dkଵ dkଶ dkଷ dPଵ dPଶ dX୧ dY୧  dZ୧ dω୧  dφ୧  dκ୧  dX୲୧ୣ_୨ dY୲୧ୣ_୨ dZ୲୧ୣ_୨൧

     (12) 
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where, X୲୧ୣ_୨, Y୲୧ୣ_୨, Z୲୧ୣ_୨  are unknown tie points ’ coordinates. In this paper 16 tie points were used for 
calibration. The linearized equations are written in the matrix form as below:  

ۏ
ێ
ێ
ێ
ۍ

ப౮
பୡ

ப౮
பξబ

… ப౮
பXబ

ப౮
பଢ଼బ

ப౮
பబ

ப౮
பன

ப౮
ப

ப౮
பச

… ப౮
பன౩

ப౮
ப౩

ப౮
பச౩

    
ப౯

பୡ
ப౯

பξబ
… ப౯

பXబ

ப౯

பଢ଼బ

ப౯

பబ

ப౯

பன

ப౯

ப

ப౯

பச
… ப౯

பன౩

ப౯

ப౩

ப౯

பச౩
 

ڭ ڭ ڭ ڭ ڭ ڭ ڭ ڭ ڭ ڭ ڭ ڭ ڭ

 

ப౮
பX౪ౠ
ப౯

பX౪ౠ
   

ڭ

ப౮
பଢ଼౪ౠ

   

ப౯

 பଢ଼౪ౠ
     

ڭ

ப౮
ப౪ౠ

…

ப౯

ப౪ౠ
…

ڭ ڭ ے
ۑ
ۑ
ۑ
ې

ۏ
ێ
ێ
ێ
ۍ

dc
ڭ

dκୱ
ڭ

dZ୲୧ୣౠے
ۑ
ۑ
ۑ
ې

ൌ අ
lଵ
lଶ
ڭ

ඉ  

 (13) 
 

Let ۯ denote the first matrix, x denote the second term vector and ܊ denote the right hand vector. Then 
equations (13) are in the linear form of ܠۯ ൌ  Above equations are only for one control point or tie point .܊
in s images. If equations (13) are written for a control point then the partial derivatives with respect to the tie 
point coordinates are zero. The matrix ۯ and the vector ܊ should be augmented for all control and tie points. 
The calibration experiment given in section 3, contains 52 control points and 16 tie points. According to their 
visibility status in each image, the dimensions of the matrix and vectors of the experiment are ۯ א जሺହଷଶሻൈሺ଼ଶሻ, 
ܠ א जሺ଼ଶሻൈଵ, and ܊ א जሺହଷଶሻൈଵ. Now the linearized calibration equations of the form ܠۯ ൌ  are ready ܊
to be optimized with the EW-WTLS estimation method.  

 
2.2 Mathematical Model and Solution of EW-WTLS 
This paper uses the EW-WTLS model based on the solution given by [8-10, 19] for camera calibration. 

In this section, the main concepts and the tricks of the model are briefly explained and the interested readers are 
referred to papers given above for the detailed analysis of the EW-WTLS method.  

The EW-WTLS method corrects the data matrix ۲ ൌ ሾ۰ ۯሿ by applying the corrections ∆۲ that makes 
the system ሺۯ  ܠሻۯ∆ ൌ ۰  ∆۰ solvable. The cost function of the estimation procedure is a weighted 
Frobenius norm of the corrections. Each row of ∆۲ is independent from the others and has its own covariance 
matrix which represents the variances of the corresponding elements of the each row and the covariances 
between these row elements if exist. If the elements within a row are independent from each other, then their 
covariances are zero and the covariance matrix of that row is diagonal and the diagonal elements represent 
the variances of the elements of that row. If the variances of some diagonal elements are zero then the covariance 
matrix is singular. EW-WTLS solves this singular problem too. The covariance matrices are square and their 
dimensions are defined with the number of the elements of the rows and this is equal to the number 
of the columns of the data matrix ۲. Let ∆܌୧

be the ith row of ∆۲, i.e., ∆۲ ൌ ሾ∆܌ଵ …                      .୫ሿ܌∆
The EW-WTLS cost function is ∑ ฮୢ܄୧

ିଵ/ଶ∆܌୧ฮଶ

ଶ୫
୧ୀଵ  [8, 19]. Here, ୢ܄୧ is the covariance matrix of the row ܌୧ of 

∆۲, and is of the form as in follows: 

୧ୢ܄ ൌ ൦

varሺeଵeଵሻ covሺeଵeଶሻ … covሺeଵe୬ሻ covሺeଵe୬ାଵሻ … covሺeଵe୬ାୢሻ
covሺeଶeଵሻ varሺeଶeଶሻ … covሺeଶe୬ሻ covሺeଶe୬ାଵሻ … covሺeଶe୬ାୢሻ

ڭ ڭ … ڭ ڭ ڭ ڭ
covሺe୬ାୢeଵሻ covሺe୬ାୢeଶሻ … covሺe୬ାୢe୬ሻ covሺe୬ାୢe୬ାଵሻ … varሺe୬ାୢe୬ାୢሻ

൪         (14) 

 
 

3. Numerical Camera Calibration Example with EW-WTLS Method 
 

This section explains the solution of the camera calibration problem with EW-WTLS method step by step 
with a real calibration experiment. All necessary data and explanations are given enough to reproduce 
the experiment. 

 
3.1 Specifications of the Experimental Set-Up and Data Acquisition 
In this experiment, Nikon Coolpix L1 digital camera was calibrated. The technical specifications 

of the camera required for the calibration are as follows: Image sensor type is high density CCD and its 
dimensions are given as 1/2.5″ (inches) or in millimeters (5.744 mm ൈ 4.308 mm). Focal length of the camera 
varies between 6.3-31.4 mm. The effective pixels are 6.2 megapixels. Four images were taken with the camera 
for calibration (Fig. 1). During the acquisition of the images, the camera was rotated approximately 100 gons 
about the Z axis before the next image had been taken and thus the possible correlations between image 
geometries are expected to be minimized. The images shown in Fig. 1 are not in their original sizes. 
The effective dimensions of these four images in pixels are all the same and ሺ2816 ൈ 2112ሻ pixel2, where 
the numbers between parentheses represent width and height of the images respectively. According to the sensor 
dimensions and the effective pixel area, size of the each detector element of the sensor is obtained as 0.002 mm 
(2 microns). It is assumed that the detector elements are square and have the same size along the horizontal 



 
Acta  Montanistica  Slovaca     Ročník 18 (2013),   číslo 4, 239-253 

245 

and vertical directions. But however, these assumptions were relaxed by adding unknown affine parameters into 
the calibration model. These two parameters can capture the aspect ratio of the detectors if exists together with 
the distortions caused by the inevitable errors arose during the mounting of the sensor to the optical system 
of the camera, as explained in section 2.  

As seen in Fig. 1, signalized control points were designed in the scene before image acquisition. 52 control 
points and 16 tie points were used for the calibration. Object coordinates of 52 control points are given 
in Tab. A.1 in the appendix A. The object coordinates were measured with a calliper which has േ 10  microns 
distance measurement precision.  In spite of the calliper precision, the resolution of the printer as well 
as the precision of the human eye which causes some inevitable random errors during the attachment 
of the printed papers on to the calibration object has been taken into account for computing the precisions 
of the object coordinates of the signalized points.  The points on the above plane between the numbers 1-16 have 
different precisions from the points on the lower plane. The computed standard deviations used for denoting the 
precisions for the points 1-16 were obtained as σX ൌ േ 0.102 mm, σଢ଼ ൌ േ 0.102 mm, and σ ൌ േ 0.121 mm 
for the X, Y, Z coordinates of the points respectively. The precisions of the points on the lower plane were 
obtained as  σX ൌ േ 0.100 mm σଢ଼ ൌ േ 0.100 mm, and σ ൌ േ 0.115 mm. In order to compute those standard 
deviations, law of the propagation of variances was used.  

Image coordinates of the control points were measured from the four images with adaptive least squares 
matching method [32]. This matching algorithm was implemented in C# by the author for image coordinate 
measurement tasks. All of the image coordinates have approximately the same precisions which are                             
σξ ൌ ση ൌ േ 0.0005 mm for all image points. The origin of the image coordinate system is the center point 
of each image and the pixel coordinates of the image points were transformed to image coordinate system 
and thus their metric values were obtained by using the detector size (namely the pixel size, 2 microns). For 
the details of above procedures, reader is referred to [31]. The measured image coordinates of the control points 
from three images are given in Table B.1 in the Appendix B. 

 
3.2. Computation of Initial Approximations of Unknowns 
Initial approximations of intrinsic parameters are determined from the camera specifications. The most 

important parameter is the camera constant c. The images given in Fig. 1 were taken with approximately 6.3 mm 
focal length (with minimum zoom state). So its approximate value was assumed c^0=6.30 mm. The other nine 
intrinsic parameters were assumed to be zero as initial, because they are strongly expected to be close to zero. 
Approximate values of the 24 extrinsic parameters should be found by using a closed form or linear solution 
technique. For this purpose direct linear transformation (DLT) [33] were used and the DLT parameters were 
estimated with LS. But one may also use another closed form space resection solution method such as given 
by [34]. The computed initial approximate values are given in Tab. 1. 

 

 
Fig. 1.  The images used for calibration. 
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Tab. 1.  Initial approximate values of the unknowns obtained by DLT. 

Intrinsic parameters Extrinsic parameters Image 1 Image 2 Image 3 Image 4 

c ൌ  6.30 mm. 
ξ

 ൌ 0.00 mm. 
η

 ൌ 0.00 mm. 
kଵ

 ൌ 0.00 
kଶ

 ൌ 0.00 
kଷ

 ൌ 0.00 
Pଵ

 ൌ 0.00 
Pଶ

 ൌ 0.00 
bଵ

 ൌ 0.00 
bଶ

 ൌ 0.00 

ω 
φ 
κ 
X

 
Y

 
Z

 

  14.2366 grad 
  19.7647 grad 
  41.2861 grad 
152.7723 mm. 
-19.4619 mm. 
331.9372 mm. 

-16.0046 grad 
  17.7970 grad 
  43.8048 grad 
131.4951 mm. 
132.7840 mm. 
291.6715 mm. 

  -8.4019 grad 
-12.2905 grad 
  45.7781 grad 
   -8.0792 mm. 
108.2274 mm. 
292.8584 mm. 

    9.1773 grad 
-15.4562 grad 
  25.6221 grad 
  -2.6024 mm. 
  35.8080 mm. 
283.7723 mm. 

 
 
3.3. Computation of Covariance and Weight Matrices of the Rows of the Data Matrix 
In the calibration problem, the rows of the data matrix ۲ ൌ ሾ۰ ۯሿ are independent from each other and they 

have different error distributions with different variances. On the other side, the elements of any row are also 
independent from each other and the covariance matrices of each row are diagonal. If the variances 
of the elements are known, then the relative weight factors can easily be computed by using those variance 
values. If the variance of any element is large, this means that this element is more erroneous than the elements 
with smaller variances, so its weight must be less relative to others. 

EW-WTLS estimation results are very sensitive to the weights of the data. For this reason, the weights 
should be computed in a precise and realistic manner. In general, the precisions of the observed data are known 
from the measurement model and the used measurement instruments. For example in this calibration experiment, 
measured quantities are the image coordinates of the control and the tie points and the object coordinates 
of the control points. Their precisions have been obtained as given in previous section. But when considering 
the data matrix ۲ ൌ ሾ۰ ۯሿit is seen that its sub-matrix ۯ is of the form equation (13), and ۰ is equal 
to the observation vector ܊. It is clear that the elements of ۯ are not directly observations themselves, neither 
image nor object coordinates are they. Those elements are functions of the one or more measurements. 
So, variance of an individual element of the matrix ۯ must be affected by the measurement errors. If this element 
is a function of only one measurement, then its variance is affected by that measurement. But in many cases, 
an individual element is a function of more than one measurement. This is the case in the calibration problem. 
In order to find the variances of the matrix elements, the law of propagation of the variances may be used. But 
if the elements in a row are correlated to each other, then in most cases it is not possible to find the realistic 
covariances between them. In this paper, the elements in the same row are assumed to be un-correlated. This 
assumption is reasonable, because the elements of the matrix ۯ given by the equations (13) are mathematically 
independent. The variances of the elements of the matrix ۯ were computed by using the law of the propagation 
of variances. In this case, the partial derivatives of the matrix elements with respect to the measurements should 
be computed. These derivatives are too complex and have lengthy formal representations. For computation 
of the partial derivatives, the vxMaxima 11.04 software was used. vxMaxima is a strong computer algebra 
software written in LISP and can perform a lot of symbolic mathematical operations including derivatives. 
Partial derivatives of the matrix elements with respect to the unknown parameters were also computed and added 
into the variance propagation formula in the calibration program written by the author in C#. If there is no prior 
information about precisions of these unknowns, their partial derivatives are set to zero and thus not affect 
the resulting variance. On the other side, if one performs an LS estimation before EW-WTLS, then                         
the a-posteriori precisions of the unknowns obtained from LS may be used to compute the weight information. 
Especially when there is no prior information this approach may be used. Variances of the vector ܊ of the data 
matrix ۲ are known since they are variances of the measured image coordinates. After all of the variance-
covariance matrices of the each row of the data matrix had been computed, proper weights were taken 
as the reciprocals of the variances.  

Figure 2 shows the general flow of the EW-WTLS computations. As seen in Fig. 2, there are two separate 
iteration loops. One is for the non linear solution of EW-WTLS, and the one for controlling the convergence 
of the non-linear bundle adjustment procedure. If the bundle adjustment does not converge to the solution 
by the means of convergence criterions, then both the data ۲ and weight matrices are updated with the results 
of the current iteration and the next iteration steps continue with the updated data. The details of the EW-WTLS 
iterations shown in the figure may be found in [9] and its MATLAB® implementation in [35]. 
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of the differences of the parameter values on the object coordinates, check points may be used. In this 
experiment, the object coordinates of the check points have been estimated within the bundle adjustment model. 
For this purpose, check points were assumed to be tie points in the model and so their object coordinates are 
unknowns of the bundle adjustment. The bundle adjustment calibration model was solved both with EW-WTLS 
and LS separately. Computed object coordinates of the check points have been compared to the actual known 
coordinates. The more precise and accurate parameters set should give the closer coordinate values to the actual 
known coordinates. In the Table C.1 and Table C.2 in the appendix C, the known check point coordinates 
and their measured image coordinates used in this experiment have respectively been given. Each check point 
has eight image coordinates which have been measured from four images. In Table 4, computed check point 
coordinates from EW-WTLS and LS estimations were given. The differences of the estimated coordinate values 
from the actual known coordinates were also given in the table.  

 
Tab. 4.  Comparison of the actual object coordinates of the check points estimated with EW-WTLS and LS bundle adjustment given 

in Tab. 2. and 3. 

Point # 

EW-WTLS results Point # 

LS results 

X 
[mm] 

Y 
 [mm] 

Z 
[mm] 

∆X 
[mm] 

∆Y 
[mm] 

∆Z 
[mm] 

X 
 [mm] 

Y 
 [mm] 

Z  
[mm] 

∆X 
[mm] 

∆Y 
[mm] 

∆Z 
[mm] 

cp  1 
cp  2 
cp  3 
cp  4 
cp  5 
cp  6 
cp  7 
cp  8 
cp  9 
cp10 
cp11 
cp14 
cp15 
cp16 
cp17 
cp18 

50.0209 
71.4286 
91.3707 
50.0467 
71.3366 
90.7941 
49.8326 
71.0737 
90.7804 
18.8676 
38.1458 

133.4443 
127.0773 
87.9496 
20.5715 
17.2094 

51.5192 
50.9307 
51.4939 
72.0581 
71.9795 
72.0651 
91.2211 
92.4878 
92.3881 
24.2545 
4.8180 

105.4459 
115.5214 
129.7059 
86.2776 
47.9923 

18.8721 
18.7443 
18.7666 
18.9478 
18.7389 
18.9451 
18.9167 
18.7860 
18.8247 
-0.1763 
-0.2093 
0.3574 
0.4221 
0.1856 
0.3949 
0.0421 

-0.1029 
-0.0846 
-0.1247 
-0.0447 
0.0074 
0.0189 
0.0854 
0.0543 
0.0326 
-0.0346 
-0.0118 
-0.1213 
-0.1143 
-0.0276 
0.0155 
0.0876 

0.1448 
0.0193 
-0.1119
0.0599 
-0.0615
-0.1471
0.0829 
-0.0338
-0.1501
-0.1035
0.0460 
0.0201 
0.0276 
0.0891 
-0.0986
0.0497

0.1279
0.2557
0.2334
0.0522
0.2611
0.0549
0.0833
0.2140
0.1753
0.1763
0.2093
-0.3574
-0.4221
-0.1856
-0.3949
-0.0421

cp  1
cp  2
cp  3
cp  4
cp  5
cp  6
cp  7
cp  8
cp  9
cp10
cp11
cp14
cp15
cp16
cp17
cp18

50.0174 
71.4285 
91.3722 
50.0382 
71.3288 
90.8033 
49.8624 
71.0298 
90.7347 
18.8516 
38.1514 
133.4188
127.0546
87.9401 
20.5428 
17.2093 

51.5200 
50.9327 
51.4888 
72.0606 
71.9902 
72.0994 
91.2094 
92.4804 
92.3749 
24.1953 
4.8211 

105.4353
115.4912
129.6702
86.1658 
47.9948 

18.8733 
18.7447 
18.7661 
18.9497 
18.7400 
18.9410 
18.9187 
18.7858 
18.8191 
-0.1509 
-0.2005 
0.3822 
0.4477 
0.1800 
0.3993 
0.0449 

-0.0994 
-0.0845 
-0.1262 
-0.0362 
0.0152 
0.0097 
0.0556 
0.0982 
0.0783 
-0.0186 
-0.0174 
-0.0958 
-0.0916 
-0.0181 
0.0442 
0.0877 

0.1440 
0.0173 
-0.1068 
0.0574 
-0.0722 
-0.1814 
0.0946 
-0.0264 
-0.1369 
-0.0443 
0.0429 
0.0307 
0.0578 
0.1248 
0.0132 
0.0472 

0.1267
0.2553
0.2339
0.0503
0.2600
0.0590
0.0813
0.2142
0.1809
0.1509
0.2005
-0.3822
-0.4477
-0.1800
-0.3993
-0.0449

 
For the comparison of the results the empirical precisions may be used. The average empirical precisions 

give the real accuracy of the estimated coordinates [31]. The empirical precisions are computed from 
the differences between the known (Tab. C.1) and the computed (Tab. 4) coordinates of the check points 
as follows.  

µതX ൌ  ට∑ ∆X 
మ

୬
    µതଢ଼ ൌ  ට∑ ∆ଢ଼ 

మ

୬ౕ
    µതXଢ଼ ൌ  ටµത

మାµതౕ
మ

ଶ
      µത ൌ  ට∑ ∆ 

మ

୬ౖ
        (16) 

where, ∆X୧, ∆Y୧, ∆Z୧ are the coordinate differences between the known and the estimated coordinates. nX, nଢ଼, n 
are the number of the check point coordinates in X, Y and Z respectively. The average empirical precisions 
obtained from the Equation (16) are µതXై ൌ േ 0.07143 mm., µതଢ଼ై ൌ േ 0.08955 mm., µതXଢ଼ై ൌ 0.08100 mm., 
and µതై ൌ േ 0.23692 mm. The average precisions obtained from the EW-WTLS estimation are               
µതXుషై ൌ േ 0.07281 mm., µതଢ଼ుషై ൌ േ 0.08928 mm., µതXଢ଼ుషై ൌ േ 0.08146 mm., and  
µതుషై ൌ േ 0.23271 mm. As seen the empirical precision of the EW-WTLS and LS estimations are almost 
equal to each other.  

Now a question comes: “Which of the estimated parameter sets is more precise and more accurate?” 
As seen from the results, the answer is clear. One may use either of them. Then really, such a question seems 
unnecessary as discussed by [4, 25]. But however, as stated in the previous sections, from the theoretical point 
of view EW-WTLS or generally the eiv models are more realistic, one may prefer to use the estimated parameter 
set from EW-WTLS. But when the computation complexity and numerical stability problems of the EW-WTLS 
are considered, another one may prefer the LS estimation. Both preferences are suitable as seen in this 
experimental test.   

Finally, for the visual evaluation tasks, camera distortion vectors obtained with EW-WTLS and LS 
estimation methods have been given in the Figures 3 and 4 respectively. X and Y axes of the figures represent 
the pixel coordinate system of an image taken with the calibrated camera. The vectors in the figures represent 
the total distortions at the vector locations and their lengths are proportional to their magnitudes. The directions 
of the arrows show the directions of changes of the image coordinates due to the distortion effects. The scales 
of the both visual graphics in the figures are the same. The minimum and maximum values of the total x (ξ) 
components of the distortion vectors of EW-WTLS are min ሼdx ൌ dξ ሽ ൌ െ0.395 mm and max ሼdx ൌ dξ ሽ ൌ
0.260 mm. The minimum and maximum values of the total y (η) components are min ሼdy ൌ dη ሽ ൌ



 
Acta  Montanistica  Slovaca     Ročník 18 (2013),   číslo 4, 239-253 

249 

െ0.226 mm and max ሼdy ൌ dη ሽ ൌ 0.280 mm. According to these values minimum and maximum total 
distortion magnitudes obtained by EW-WTLS are min ሼdist ሽ ൌ 0.0 and max ሼdist ሽ ൌ 0.485 mm. 

 
Fig. 3.  Distortion vectors after EW-WTLS bundle adjustment. 

 
The minimum and maximum values of the total x (ξ) components of the distortion vectors of LS are 

min ሼdx ൌ dξ ሽ ൌ െ0.355 mm and max ሼdx ൌ dξ ሽ ൌ 0.232 mm. The minimum and maximum values 
of the total y (η) components are min ሼdy ൌ dη ሽ ൌ െ0.197 mm and max ሼdy ൌ dη ሽ ൌ 0.252 mm. According 
to these values minimum and maximum total distortion magnitudes obtained by LS are min ሼdist ሽ ൌ 0.0 and 
max ሼdist ሽ ൌ 0.436 mm.  

 
Fig. 4.  Distortion vectors after LS bundle adjustment. 

 
As seen in the figures, magnitudes of the maximum distortion values obtained from the EW-WTLS are 

greater than the maximum distortion values of the LS. But since the maximum distortions are located 
at the corner regions of the images, for the rest of the image areas the distortion magnitudes obtained from              
EW-WTLS and LS are almost the same.  

 
4. Conclusions 

 
In this paper it has been shown that the EW-WTLS estimation method gives almost the same precision 

and accuracy as LS for the camera calibration problem. In the most of the papers in the literature on the variants 
of the TLS and the errors in variables models, it is claimed that those models give more precise and accurate 
results than LS. These claims essentially originate from the statistically more improved theoretical model 
of the TLS estimation methods. Because, in the normal situations, improvements in the theoretical basis of any 
model causes one to expect better practical results from this model.  This is of course the case must be true for 
ideal situations. But however, there are numerous unexpected factors that may influence and take away the ideal 
expectations from the desired practical results. In this present work, it has been seen that the both EW-WTLS 
and LS methods have given almost the same results by the means of the precision and accuracy, although                
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EW-WTLS has a statistically more realistic model. This situation mainly arises from the fact that even the ideal 
theory of the EW-WTLS is stronger than LS, in practice the statistical definition of the behavior of the errors 
in the data matrix cannot in general be realistic. On the other side, the calibration experiment has showed that 
the EW-WTLS solution is very sensitive to the weights of the data. Note that the weights are computed from 
the data statistics and so in this case, if the covariance information of the data are not at hand apriori or cannot be 
estimated properly, then this kind of imprecise covariance information cause the theoretical model to be deviated 
from the actual real case. It is not also possible and there is no way to define the exact real statistical relations 
between the data elements. So it is unnecessary and useless job to discuss whether TLS or its variants and LS 
methods are more precise and accurate. This means that one may of course prefer one method or the other. Either 
of them is acceptable as shown in the paper. But however, if it is believed that the apriori statistical information 
of the data are known in a precise manner, than choosing the TLS variants (or errors in variables models) might 
be more reasonable, since its statistical model is theoretically more realistic and since the apriori information are 
believed to be close enough to the unknown reality. As a final remark, it may be said that the more realistic 
theoretical model does not mean more precise and more accurate practical results.  

 
 
Appendix A. 

Tab. A.1. Object coordinates of the control points. 

Po
in

t #
 

X  
[mm] 

Y 
[mm] 

Z 
[mm] Po

in
t #

 

X 
[mm] 

Y  
[mm] 

Z 
[mm] Po

in
t #

 

X 
[mm] 

Y 
[mm] 

Z 
[mm] 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 

  40.063 
  60.063 
  80.064 
100.062 
  40.188 
  60.188 
  80.189 
100.187 
  40.313 
  60.313 
  80.314 
100.312 
  40.438 
  60.438 
  80.439 
100.437 
    8.963 

  41.000
  41.000 
  41.000 
  41.000 
  61.000 
  61.000 
  61.000 
  61.000 
  81.000 
  81.000 
  81.000 
  81.000 
101.000 
101.000 
101.000 
101.000 
  16.042 

19.000 
19.000 
19.000 
19.000 
19.000 
19.000 
19.000 
19.000 
19.000 
19.000 
19.000 
19.000 
19.000 
19.000 
19.000 
19.000 
  0.000 

18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 

25.632
  43.398 
  60.725 
  53.926 
  71.691 
  85.290 
  90.554 
103.933 
116.216 
128.937 
127.621 
118.409 
126.963 
126.305 
118.628 
126.743 
118.409 

9.686
  16.699 
  21.302 
    9.467 
  14.946 
  10.343 
  21.741 
  16.042 
  10.124 
  21.960 
  40.371 
  51.110 
  60.316 
  78.946 
  88.371 
  97.795 
107.220 

0.000
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 

35
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 

119.286 
111.390 
100.424 
  78.710 
  96.914 
  65.331 
  44.933 
  55.022 
  35.283 
  25.413 
    8.744 
    8.305 
  19.710 
    8.086 
    7.647 
  17.517 
    8.305 
    8.963 

128.699 
119.932 
130.014 
119.932 
119.056 
129.357 
128.699 
120.590 
119.494 
128.699 
128.699 
112.699 
105.466 
  93.631 
  77.412 
  69.083 
  58.343 
  37.740 

0.000
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
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Appendix B. 
Tab. B.1. Image coordinates of the control points. 

Po
in

t 
# Image 1 

[mm] 
ξ             η 

Image 2 
[mm] 

ξ             η 

Image 3 
[mm] 

ξ           η 

Image 4 
[mm] 

ξ   η

Po
in

t 
# Image 1 

[mm] 
ξ    η

Image 2 
[mm] 

ξ    η

Image 3 
[mm] 

ξ          η 

Image 4 
[mm] 

ξ           η 

Po
in

t 
# Image 1 

[mm] 
ξ           η 

Image 2 
[mm] 

ξ           η 

Image 3 
[mm] 

ξ          η 

Image 4 
[mm] 

ξ           η 

1  ‐0.3673  0.0138  ‐0.5218  ‐0.1704  ‐0.6552  ‐0.3611  ‐0.8738 ‐0.4613 22 ‐0.2013 ‐0.7937  ‐0.1920 ‐0.9337 ‐0.5112 ‐1.0197  ‐0.5202 ‐1.2099 43 0.4731 0.9273 0.4568 1.1976 0.3865 1.0436 ‐0.4118  1.1701 

2  ‐0.0833  ‐0.2057  ‐0.2126  ‐0.4329  ‐0.3268  ‐0.6325  ‐0.4488 ‐0.6263 23 ‐0.0653 ‐1.0157  ‐0.0451 ‐1.1789 ‐0.3702 ‐1.2447  ‐0.2889 ‐1.3976 44 0.4396 1.1197 0.4117 1.4674 0.3684 1.3337 ‐0.5273  1.4289 

3  0.2085  ‐0.4292  0.1063  ‐0.7032  ‐0.0064  ‐0.8959  ‐0.0357 ‐0.7853 24 0.1449 ‐0.9101  0.1629 ‐1.0767 ‐0.1431 ‐1.1493  ‐0.1027 ‐1.2038 45 0.2265 1.2594 0.1534 1.6499 0.1047 1.5814 ‐0.8523  1.5833 

4  0.5094  ‐0.6591  0.4336  ‐0.9797  0.3035  ‐1.1486  0.3590 ‐0.9343 25 0.2688 ‐1.1459  0.2992 ‐1.3352 ‐0.0241 ‐1.3810  0.1032 ‐1.4067 46 0.0571 1.0870 ‐0.0363 1.3895 ‐0.1354 1.3323 ‐0.9953  1.2790 

5  ‐0.1259  0.2856  ‐0.2901  0.1643  ‐0.3635  ‐0.0375  ‐0.7034 ‐0.0238 26 0.3781 ‐1.3764  0.4153 ‐1.5838 0.0722 ‐1.5956  0.2855 ‐1.6005 47 0.1250 0.9010 0.0541 1.1408 ‐0.0590 1.0479 ‐0.8269  1.0384 

6  0.1562  0.0757  0.0281  ‐0.0968  ‐0.0350  ‐0.3191  ‐0.2824 ‐0.1933 27 0.7084 ‐1.3510  0.7563 ‐1.5793 0.4036 ‐1.5808  0.5982 ‐1.4491 48 ‐0.1494 0.8664 ‐0.2516 1.0773 ‐0.4177 1.0281 ‐1.1612  0.9078 

7  0.4495  ‐0.1426  0.3566  ‐0.3662  0.2861  ‐0.5905  0.1249 ‐0.3614 28 0.9009 ‐1.0663  0.9642 ‐1.2863 0.6268 ‐1.3234  0.7046 ‐1.0902 49 ‐0.3310 0.6768 ‐0.4353 0.8184 ‐0.6548 0.7738 ‐1.3081  0.5853 

8  0.7504  ‐0.3646  0.6933  ‐0.6421  0.5915  ‐0.8522  0.5144 ‐0.5179 29 0.8869 ‐0.8052  0.9495 ‐0.9957 - - - - 50 ‐0.2987 0.4849 ‐0.3863 0.5708 ‐0.6146 0.5013 ‐1.1739  0.3294 

9  0.1071  0.5508  ‐0.0505  0.5084  ‐0.0618  0.2909  ‐0.5322 0.4101 30 1.1177 ‐0.7700  1.2078 ‐0.9642 0.8855 ‐1.0464  0.8320 ‐0.7056 51 ‐0.5348 0.4389 ‐0.6310 0.5061 ‐0.9160 0.4621 ‐1.4554  0.1867 

10  0.3908  0.3486  0.2773  0.2506  0.2666  0.0017  ‐0.1180 0.2329 31 1.3118 ‐0.4994  1.4411 ‐0.6493 1.1300 ‐0.7762  0.9477 ‐0.3478 52 ‐0.7583 0.1728 ‐0.8339 0.1779 ‐1.1845 0.1309 ‐1.6160  ‐0.2478 

11  0.6834  0.1384  0.6154  ‐0.0165  0.5827  ‐0.2781  0.2812 0.0579 32 1.2989 ‐0.2880  1.4358 ‐0.3889 - - - -             

12  0.9817  ‐0.0766  0.9614  ‐0.2951  0.8852  ‐0.5461  0.6654 ‐0.1071 33 1.5169 ‐0.2453  1.6985 ‐0.3390 1.3924 ‐0.5173  1.0800 ‐0.0011             

13  0.3350  0.8075  0.1967  0.8626  0.2430  0.6254  ‐0.3618 0.8294 34 1.4934 ‐0.0302  1.6838 ‐0.0619 - - - -          

14  0.6177  0.6123  0.5322  0.6056  0.5694  0.3272  0.0445 0.6478 35 1.7211 0.2397  1.9855 0.2981 1.7190 0.0241  1.1535 0.6204          

15  0.9079  0.4101  0.8800  0.3393  0.8831  0.0395  0.4361 0.4691 36 1.5213 0.2059  1.7305 0.2504 1.4938 ‐0.0001  0.9663 0.5265          

16  1.2055  0.2011  1.2349  0.0652  1.1819  ‐0.2342  0.8114 0.2987 37 1.4664 0.4429  1.6725 0.5713 1.4850 0.2921  0.8467 0.7990          

17  ‐1.0082  ‐0.1047  ‐1.0469  ‐0.1478  ‐1.4711  ‐0.1996  ‐1.7954 ‐0.7036 38 1.0615 0.5282  1.1723 0.6760 1.0395 0.4365  0.3989 0.7992          

18  ‐0.8729  ‐0.3620  ‐0.8891  ‐0.4400  ‐1.2866  ‐0.5141  ‐1.4955 ‐0.9730 39 1.3091 0.3408  1.4697 0.4264 1.2862 0.1755  0.7153 0.6310          

19  ‐0.5612  ‐0.4574  ‐0.5754  ‐0.5521  ‐0.9207  ‐0.6413  ‐1.0725 ‐0.9639 40 0.9733 0.7666  1.0665 1.0064 0.9788 0.7680  0.2247 1.0868          

20  ‐0.2760  ‐0.5831  ‐0.2817  ‐0.6998  ‐0.5943  ‐0.7926  ‐0.6858 ‐1.0003 41 0.6929 0.9472  0.7225 1.2414 0.6685 1.0496  ‐0.1562 1.2548          

21  ‐0.5083  ‐0.6709  ‐0.5058  ‐0.7906  ‐0.8537  ‐0.8766  ‐0.9172 ‐1.1926 42 0.7452 0.7594  0.7872 0.9814 0.7027 0.7784  ‐0.0299 1.0157          

Note: The points with the numbers 29, 32 and 34 are invisible in the images 3 and 4. 
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Appendix C. 
Tab. C.1.  Known object coordinates of the check points. 

Po
in

t #
 

X  
[mm] 

Y 
[mm] 

Z 
[mm] Po

in
t #

 

X 
[mm] 

Y 
 [mm] 

Z  
[mm] 

cp1 
cp2 
cp3 
cp4 
cp5 
cp6 
cp7 
cp8 

49.9180 
71.3440 
91.2460 
50.0020 
71.3440 
90.8130 
49.9180 
71.1280 

51.6640 
50.9500 
51.3820 
72.1180 
71.9180 
71.9180 
91.3040 
92.4540 

19.0000 
19.0000 
19.0000 
19.0000 
19.0000 
19.0000 
19.0000 
19.0000 

cp 9 
cp10 
cp11 
cp14 
cp15 
cp16 
cp17 
cp18 

90.8130 
18.8330 
38.1340 

133.3230 
126.9630 
87.9220 
20.5870 
17.2970 

92.2380 
24.1510 
4.8640 

105.4660 
115.5490 
129.7950 
86.1790 
48.0420 

19.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 

 
 

Tab. C.2.  Image coordinates of the check points. 

Point # 

Image 1 
[mm] 

ξ                      η 

Image 2 
[mm] 

ξ                     η 

Image 3 
[mm] 

ξ                     η 

Image 4 
[mm] 

ξ                    η 

cp  1 
cp  2 
cp  3 
cp  4 
cp  5 
cp  6 
cp  7 
cp  8 
cp  9 
cp10 
cp11 
cp14 
cp15 
cp16 
cp17 
cp18 

-0.1014 
0.1991 
0.5012 
0.1413 
0.4471 
0.7363 
0.3584 
0.6774 
0.9662 
-0.7907 
-0.7697 
1.6930 
1.7018 
1.2878 
-0.0709 
-0.5382 

0.0562 
-0.1881 
-0.4046 
0.3357 
0.1075 
-0.1008 
0.5905 
0.3895 
0.1817 
-0.1012 
-0.5627 
-0.2107 
-0.0094 
0.5599 
0.6677 
0.2226 

-0.2486 
0.0858 
0.4198 
-0.0019 
0.3477 
0.6776 
0.2317 
0.6046 
0.9447 
-0.8362 
-0.7685 
1.9172 
1.9429 
1.4545 
-0.1539 
-0.6150 

0.3393 
-0.0005 
0.3185 
-0.0344 
0.3075 
0.6101 
0.2528 
0.6086 
0.9087 
-1.2065 
-1.1563 
1.5853 
1.6411 
1.3088 
-0.3245 
-0.9126 

-0.3270 
-0.6279 
-0.8823 
0.0032 
-0.2978 
-0.5627 
0.3211 
0.0350 
-0.2433 
-0.2098 
-0.7447 
-0.4885 
-0.2660 
0.4577 
0.7269 
0.1740 

-0.1220 
-0.4182 
-0.6830 
0.2293 
-0.0554 
-0.3218 
0.5674 
0.3105 
0.0380 
-0.1441 
-0.6611 
-0.2969 
-0.0369 
0.7293 
0.8127 
0.23970 

-0.5771 
-0.1355 
0.2669 
-0.4019 
0.0330 
0.4174 
-0.2473 
0.1890 
0.5674 
-1.5200 
-1.2752 
1.2388 
1.1986 
0.6301 
-0.9689 
-1.3565 

-0.3099 
-0.5037 
-0.6512 
0.1337 
-0.0546 
-0.2161 
0.5404 
0.3759 
0.2018 
-0.6142 
-1.1698 
0.0912 
0.3244 
0.9005 
0.6493 
-0.1040 
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