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Analytical derivation of friction parameters for FEM calculation 
of the state of stress in foundation structures on undermined territories 

 
 

Radim Čajka1 

 
 

When calculating the state of stress in a structure caused by relative strain of landscape which is a result of undermining, the structure 
is often deformed in order to create the specific situation. Each part of the structure resists the strain in a difference way. This depends 
on places where the structure is in contact with soil environment. When calculating the 3D foundation structures by means of the Finite 
Element Method (FEM), it is necessary to determine the soil environment resistance. 

For that purpose, most FEM software applications enable now to enter the friction parameters C1x and C1y. Unlike C1z which resists 
the structure in the direction perpendicular to the element’s plane, these parameters are applied in the central line plane of a slab and rod 
element. 
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Introduction 
 

When calculating the 3D foundation structures by means of the Finite Element Method (FEM), 
it is necessary to determine the soil environment resistance [11]. For that purpose, most FEM software 
applications enable now to enter the friction parameters C1x and C1y. Unlike C1z which resists the structure in the 
direction perpendicular to the element’s plane, these parameters are applied in the central line plane of a slab and 
rod element, for instance  [6], [7], [10], [13] a [21]. 
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Fig.1.  Foundation Structure on the Subsoil Exposed to Strain: 

a) without a slide joint, b) with a slide joint 
 
In practical designing works an issue is reliable determination of those parameters. This paper solves 

the task analytically and provides an numerical example. Numerical approach of solution is evident from 
[5], [12]. 

 
Analytical solution 

 
Differential conditions of the balance are given by the balance conditions for the acting forces 

in the horizontal direction. 

∑ = 0ixF                  (1) 

that are determined for a differential element, see Fig. 1. 

0... 1 =−+++− dxuCdxpdNNN xxxxx              (2) 

where the friction forces tx are positively correlated with the friction parameters C1x and shift parameter u 

uCt xx .1=                  (3) 

Having modified the equation (2), one obtains 
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uCp
dx

dN
xx

x .1+−=                (4) 

Another equation is obtained from a 1D physical equation – Hooke’s law with the following relation for 
the normal force Nx and axial deformation of a rod  

ccc E εσ .=                 (5) 

Having substituted the stress σc and relative strain εb (6) 

c

x
c A

N
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dx
du

c =ε                  (6) 

in (5) and having derivating the both sides, one obtains  

2
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Fig. 2.  Orientation of the Friction Parameters C1x, C1y. Fig. 3.  Differential Element of Balance. 
 
 
Comparison of the both derivations of the normal force (4) and (7) results in a basic differential equation 

of a rod which is exposed by an axial force and where friction of the environment is taken into account. 

xxcc puC
dx
duAE −=− ... 12

2

               (8) 

It is advisable for the analytical solution to divide (8) with the rigidity Ec.Ac and to introduce substitution 
there 

cc

x

AE
C

.
12 =α                 (9) 

The final differential equation which is suitable for the analytical solution is then 

cc

x

AE
pu

dx
du

.
.2

2

2

−=− α              (10) 

In the first step, it is necessary to solve the homogeneous equation (10) where the right side is zero, this 
means 

0.2
2

2

=− u
dx
du α               (11) 

The solution should be as follows 
xreu .=                (12) 

and the second derivation of the function is 

xrer
dx
du ,2

2

2

.=               (13) 

Substitution of the function (12) and derivation of the function (13) in a differential equation (11) and 
simplification of   xre .  results in the following characteristic equation 
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022 =− αr               (14) 

Having solving the equation, two roots are obtained 

α±=2,1r                (15) 

The final solution to the longitudinal strain in  

( ) xx eAeAxu .
2

.
1 .. αα −+=              (16) 

where boundary conditions of the task should be used in order to solve the constants A1, A2 which are unknown 
so far. 

If the right side of the equation is not zero (this means, if the rod is axially loaded 0≠xp ), a constant 
variation method, for instance, should be used in order to solve the non-homogeneous equation.   

Let us also assumed that 0=xp  applies along the rod. This results in the solution to (11). 
 

Boundary conditions 
 

The following two boundary conditions, see Fig. 2, result from the nature of the task: 
• for x=0 strain should be u(0) = 0, 
• for  x=L the relative strain (this means, derivation of u(L)) is known. 

 
The first boundary condition can be substituted directly in (16), while the other boundary condition results 

from the modified Hooke’s law  (5) a (6) which includes now effects of relative strain εmax 

ccx AE
dx
duN ..max ⎟

⎠
⎞

⎜
⎝
⎛ −= ε              (17) 

Having modified (17) and assuming xx NF = (the specified axial force at the end of the rod), the second 
condition is: 

max.
ε+=

cc

x

AE
F

dx
du               (18) 

In order to express (18), it is necessary to derive the solution to the horizontal strain in the rod axis from 
(16) 

xx eAeA
dx

xdu ,
2

,
1 ....)( αα αα −−=             (19) 

 
 

Fig. 4.  Distribution of shearing stress and normal forces. 
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The substitution of the both boundary conditions in (16) and derivation (19) gives a system of 2 linear 
equations for 2 unknown quantities A1, A2: 

0.
2

0,
1 ..0 αα −+= eAeA              (20) 

LL

cc

x eAeA
AE

F .
2

.
1 .....

.
αα ααε −−=+             (21) 

Having solved (20) and (21) one obtains the following relation for the unknown constants: 

LaL
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The final relation for strain in a rod which is loaded with the axial force Fx in x = L and strain εmax is 
obtained after introducing the constants (22) into the solution to (16) and after modification of 
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Derivation of (23) gives 
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The normal forces can be determined by introducing (24) into (17) 
 

( ) max
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If the maximum axial force in the middle of the foundation structure is know (this can be solved, for 

instance, in line with ČSN 73 0039 [1]), the input parameters Ec, Ac, L and εmax can be used in (25) for 
determination of the friction parameter C1x for x = 0 
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When dealing with (26) with the unknown parameter α it is advisable to modify the equation as follows 

2.
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....
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maxmax, ll
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εε
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and then as follows 
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Let us assume the following hyperbolic function cosh(x)  

2
)cosh(

xx eex
−+

=              (29) 

(28) can be modified then as follows 
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The inversion function of cosh(x) is an arc-hyperbolic function argcosh(x), this means the argument 
of the hyperbolic  cos  x.  Having modified (30) again, one obtains 

⎟
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The friction parameter C1x is obtained by substitution (9) 
2

1 .. αccx AEC =               (32) 

which, after introduction of  α from (31) gives 
2
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(33) can be modified if the arc-hyperbolic function  argcosh(x) is described by means of a logarithm. 
For x > 1  

( )1ln)cosh(arg 2 −+= xxx             (34) 

 
The relation for the friction parameter C1x (33) can be modified as follows 
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or as follows 
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where the constant is 

maxmax,
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Example – calculation of a friction parameter 

 
In order to validate the proposed solution, calculations were carried out for a reinforced concrete foundation 

slab described in [4], see Fig. 5. The solution was performed for the constant friction parameter C1x by means 
of (33) and for non-linear C1x by means of FEM, see [12]. 

The relative strain is εmax = 5,0.10-3 and correction coefficient is µε  = 0.85 for the applicable mining 
environment. The subsoil is compacted sand with the internal friction angle ϕef = 32o, cohesion cef = 0, modulus 
of elasticity Edef = 20 MPa and Poisson ratio ν = 0.3.  

The designed average contact stress in the foundation joint is σvd = 240 kPa. 
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Fig. 5.  Specification for the Comparative Example. 
 
 
For the slab length L = 16.0 m, slab width b = 1.0 m and the relative strain εmax the depth of the foundation 

soil which is still influenced by the foundation structure is: 
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( ) ( ) meeLa b 159,21.0,16.75,01..75,0
53,00,1.94,056,053,0.94,056,0 =−=−= −−

          (43) 

The solution pursuant to ČSN 73 0039 and comments [1] results in the following maximum shearing stress 
at the end of the beam [4] 

τxz,max = 75.0 kPa 

and in the following maximum tensile stress inside the slab 

Nx,max = 237.8 kN 

When calculating the foundation structure which is loaded by relative strain εmax in the subsoil with 
the friction parameter C1x, one should obtain at least the same maximum force Nx,max. This should be in line with 
the calculated friction parameters C1x which is determined from the derived (33) where following values are 
introduced:  

Fx = 0, L = 8.0 m, Ec = 27.106 kPa, Ac = 0.5 m2,εmax = 5.10-3 a Nx,max = 237.8 kN 

Then, the constant friction parameter C1x is:  
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⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
+

=

2

maxmax,

max
1 ..

..arccos.1..
ε

ε

ccx

ccx
ccx AEN

AEFh
L

AEC  

2

2

36

36
6 .6,1490

10.5.5,0.10.0,278,237
10.5.5,0.10.0,270arccos.

0,8
1.5,0.10.27 −

−

−

=⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

+
= mkNh          (44) 

When the average friction parameters is assumed to be the ratio (the maximum shearing stress  
τxz,max = 75.0 kPa to the maximum strain under the edge of the foundation) 

mLu 040,00,8.10.5. 3
maxmax === −ε  

the friction parameter is considerably higher 
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u
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τ
 

Fig. 6 show results for the constant and non-linear friction parameters C1x [12] along the slab length. 

 
 

Fig. 6.  Tensile forces along the rod. 
 
 

Conclusion 
 

This paper discusses procedures and relations needed for calculation of the friction parameters C1x which 
should be entered as input parameters for foundation structures located in subsoil where undermining strain 
occurs [1], [25], [26]. The proposed procedures can be applied to other types of the deformation load, for 
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instance because of the concrete shrinkage or temperature changes [8]. In order to find out the maximum forces 
it is enough to know the constant course of C1x for the entire foundation structure. If a more precise course 
of deformation and axial forces is needed, it is essential to determine the non-linear course of the friction 
parameter C1x in the individual members [12]. In case of 2D structures, the calculation takes into account 
resistance of environment in the second direction which is characterised by the friction parameter C1y [11]. 
The solution to such 2D structure shows the progress of strain and internal forces even those parts 
of the structure which are above soil and does not touch soil at all. This solution can be used also for rheological 
sliding joints which decrease considerably friction resistance between the foundations and subsoil [3], [8], [9], 
[20] or for prestressed foundation or floor structures [24]. 
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