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Vibrations caused by moving vehicles are necessary to take into account if roads are situated in populated areas. The vibration of 
ground induced by moving vehicles is a complicated problem. Values of induced vibrations depend on several parameters, i.e. the 
parameters of vehicles, quality of roads or railroad tracks, and subsurface geological patterns. It is possible to derive initial information 
about the vibration effect from experimental measurements. Four individual phases are usually studied in the surroundings of roads or 
railroads: generation of vibrations, propagation of seismic waves through soils, influence of vibrations on the nearest structures, and a 
reduction of vibrations using wave barriers.  

This paper presents a methodology of seismological measurements in the surroundings of the road or railway and a detailed 
interpretation of digital data from seismological viewpoint. Frequency range of seismic channel was 2 – 200 Hz, so that the detailed 
interpretation may be performed in the time-frequency domain. Relations between the distance and maximum amplitude of vibration velocity 
were compiled. The relations are relatively complicated, especially in the distance of more than 7 – 10 m. We suppose that described effect is 
induced by local surface and subsurface geological pattern. 
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Introduction 
 

An important phenomenon of present time is the transport of people and various materials. Vibrations 
expanding to the surroundings of road or tread road are one of the consequences of increasing traffic. In extreme 
cases, the vibration affects people or causes damage of buildings. Effects of vibrations on buildings and their 
occupants are both a technical and complex subject. Vibrations can be caused by passing road traffic, by 
railways, both surface and underground, by users of buildings and by numerous other sources. Generally, 
accepted influences (limit values) solve hygienic and construction standards. Geotechnical earthquake 
engineering deals with, among others, spreading of vibrations in different types of natural and artificial 
environments (Towhata 2008). Generation of vibrations could be reduced by modified design of vehicles, by 
improving the quality of tracks, by determining the optimum speed etc., and also by putting into practice suitable 
structures called vibration barriers. Barrier parameters are established by using numerical modelling (e.g., Ju 
2009, Yang and Hung 2009). Obtained properties of numerical models (based on BEM - "boundary element 
method" or FIEM - "finite/infinite element method") are verified using physical models or analysis of 
experimental seismological measurement results.  

Reliable evaluation of dynamic loading of both transport structures and its subsoil is one of the important 
factors determining the safety and serviceability of transport structures and contributing to the decrease of life 
cycle cost (LCC). Several examples of seismological measurements of vibrations induced by moving vehicles 
are presented in this paper. Our initial study was presented in the paper by Kaláb et al. (2012). That paper 
described some examples of experimental measurements.  

 
Technical seismicity 

 
The structural response of buildings depends on the excitation, as defined, e.g. in International Standards 

ISO 4866:1990. Different sources of vibrations might be taken into consideration such as earthquakes, 
explosions, wind effects, sonic booms, internal machinery, traffic, construction activities and others. With the 
exception of earthquakes, all sources belong to the technical seismicity. Generally, the types of vibration can be 
classified as deterministic or random. Deterministic data are those that can be described by explicit mathematical 
functions (periodic, quasi-periodic, non-periodic). Random data are stationary or non-stationary. 

To evaluate measured seismological data from the structural response of buildings, the following factors 
need to be taken into account (according to ISO 4866:1990): 
• Resonant frequencies of basic structure and component parts (walls, floors, windows); 
• Damping characteristics of basic structure and component parts; 
• Type of construction, its condition and material properties; 
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• Spectral structural features; 
• Characteristics of excitation; 
• Deflected form; 
• Non-linearity in amplitude response. 

 
Most available guidelines are based on frequency-velocity control bounds. Studies have shown that velocity 

seems to correlate closely with observed damage. Frequency plays a large role in vibration related to structural 
damage. Common structures have a low natural frequency, typically less than 30 Hz. Structural vibration 
exponentially increases if the vibration frequency falls within the bounds of the natural frequency of the 
structure. This phenomenon is commonly known as resonance. Thus, low frequency vibrations are potentially 
more of a concern than their high frequency counterparts (Henwood and Haramy 2015). Evaluating the influence 
and/or damage of buildings due to vibration, National (e.g. DIN 4150 - German, CSN 73 0040 – Czech, STN 73 
0036 – Slovak) or International Standards are used (ISO 4866:1990). 

Different vibration instrumentations consisting of a sensor and a recorder were used for our experimental 
measurements. All used sensors (Le-3D, ViGeo2) have three independent components; one in the vertical 
direction, and the other two in orthogonal horizontal directions. Measured seismological data were interpreted in 
time and frequency domains. Methodology of seismological measurements of technical vibrations and 
interpretations of these data were presented in many papers, e.g. Hradil et al. 2009, Kaláb et al. 2013, 2014, 
Henwood and Haramy 2015. 

 
Damage of church 

 
The first example presents seismological measurements at Světí near Hradec Králové (Eastern Bohemia). 

Measurements were performed in St. Andrew’s church founded in the Middle Ages (14th century); the church 
was declared the National Heritage Site. Today, less and more significant cracks are detected in its walls and 
ceiling (Fig. 1).  

Seismological measurement was performed using four seismic stations installed inside the church anchored 
to the floor. All sensors were located near the walls with the most significant cracks (crack up to 3 cm). An 
example of wave pattern is presented in Fig. 2, the minimum distance between this sensor and road was 14 m. 
Duration of seismic effect was up to 7 s, the maximum component value of velocity was 0.44 mm.s–1, and 
harmonic vibrations were in the range of about 8-12 Hz. Nevertheless, the main cause of failures is probably the 
instability of soils under the basement of the church, partly located on a gentle slope. Vibrations induced by 
traffic (especially heavy agricultural vehicles) increase loading of the church. This often repeated loading has a 
highly negative impact on the technical conditions of the church. 

 

 
 

 
Fig. 1.  Church at Světí near Hradec Králové, on the right: examples of failures in the church (photo: Kaláb). 
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Conclusion 
 

This paper has summarized three examples of experimental measurements of vibrations generated by 
traffic. Generally, these vibrations do not evoke damages of structures in the surroundings of roads and 
roadways. However, first of all, they provoke very unpleasant perception of people. The specific attention is 
necessary to pay to road traffic vibrations on historic buildings (e.g. Hume 20xx). Due to the particular 
geological structure and/or particular construction, substantial vibrations could be generated. Three main parts 
are necessary to take into account; it means - source, path and receiver. Physical parameters and characteristics 
of the soil/rock environment (represented path) are usually not available. However, these geological 
characteristics of the environment between the source of vibrations and a studied place, usually structures or 
buildings, have an important influence on the values and other parameters of the generated vibrations. In order 
for us to evaluate reasons of these vibrations the interpretation in both time and frequency domains is necessary. 
Modern numerical methods, for example, fuzzy sets, fractal analysis and wavelet analysis (e.g. Lyubushin et al. 
2004, Telesca et al. 2011) may have provided some new information. 
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