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Geodesy provides a unique framework for the monitoring, understanding and prognosis of the Earth system as a whole, globally as 
well as locally. This understanding of geodesy is based on the three pillars: (i) geokinematics, (ii) Earth rotation, and (iii) gravity field. The 
third pillar of geodesy refers to the knowledge of the geometry of the gravity field of the Earth. The gravity field of the Earth addresses the 
problems of the transformation of geodetic observations made in physical space (affected by gravity) into geometrical space in which 
positions are usually defined. In addition, the shapes of equipotential surfaces and plumb lines are needed for projects involving the physical 
environment (e.g., flow of water). In this paper, the utility of Back Propagation Artificial Neural Network (BPANN) more widely applied in 
diverse fields of science among all other neural network models is investigated as an alternative tool for gravity field modelling. In order to 
evaluate the performance of BPANN, the gravity values are also calculated by global geopotential models (EGM2008 and EIGEN-6C4). The 
results are compared in terms of the root mean square error (RMSE) over a study area.  It was concluded that the employment of  BPANN 
can be a feasible gravity calculation tool for the geodetic application. 
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Introduction 
 

Geodesy is the science of determining - representation the geometry, gravity field, and rotation of the Earth 
and their evolution in a 3D time-varying space. This understanding of modern geodesy is based on the definition 
of the three pillars of geodesy: (1) geokinematics, (2) Earth rotation, and (3) gravity field (Plag et al. 2009). The 
third pillar of this characterization of geodesy refers to the knowledge of the geometry of the gravity field of the 
Earth. The gravity field of the Earth addresses the problems of the transformation of geodetic observations made 
in physical space (affected by gravity) into geometrical space in which positions are usually defined. In addition, 
the shapes of equipotential surfaces and plumb lines are needed for projects involving the physical environment 
(e.g., flow of water). Consequently, geodesy also monitors the variability of the gravity field (Dehant 2005). 
Besides geodesy, the knowledge about the Earth's gravity field essentially supports research activities in 
geophysics and geology. At regional scales, gravity data are useful in determining the shape of the Earth, in 
accounting for the orbits of satellites, determining the Earth's mass and moment of inertia, and conducting 
geophysical mapping and interpretation of lithospheric structure and geodynamic processes. In local studies of 
the upper crust, gravity data can effectively address a broad range of basic geologic questions, delineate geologic 
features related to natural hazards (faults, volcanoes, landslides), and aid in the search for natural resources 
(groundwater, oil, gas, minerals, geothermal energy) (Hildenbrand et al. 2002).   

Until a global geodetic datum is fully and formally accepted, used, and implemented worldwide, global 
geodetic applications require three different surfaces to be clearly defined: (i) the irregular topographic surface 
(the landmass topography as well as the ocean bathymetry), (ii) a geometric or mathematical reference surface 
called the ellipsoid, (iii) the geoid, the equipotential surface coinciding with mean sea level at ocean (Li and 
Götze 2001). 

Gravity has an inseparable connection with these three surfaces. Accurate gravity data are the foundation 
for the determination of “heights”. Geodesists calculate the height of locations on the Earth's surface based on 
the mean sea level. So knowing how gravity changes, sea level helps geodesists make more accurate 
measurements. Gravity corrections and gravity anomalies have been traditionally defined with respect to the 
height.  

Due to space-based techniques, in particular, the widespread use of Global Navigation Satellite Systems 
(GNSS) for determining fast and accurate ellipsoidal heights (referenced to a reference ellipsoid) have incited the 
need for a similarly fast and accurate determination of orthometric heights related to the geoid (physically 
meaningful surface). Ellipsoidal heights cannot be used to determine where water will flow, and therefore are not 
used in topographic/floodplain mapping. Orthometric heights have a very strong correlation (>99%) with the 
direction of water flow and are more useful (and are colloquially-although not quite appropriately referred to by 
the more common term “height above sea level”). The relation between the ellipsoidal and orthometric heights is 
the height of the geoid above the reference ellipsoid, is usually called the geoid undulation. The geoid is the 
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viable parameter for transforming ellipsoidal heights to orthometric heights and vice versa, and geoid modelling 
can only be done with measurements of the acceleration of gravity near the Earth’s surface 

The value of gravity measured at a point on the Earth’s surface and the gravity calculated for the same 
location taking into account altitude, latitude, and topographical irregularities do not usually agree. The 
difference between the two is called gravity an
produced by the underground distribution of masses differing from those of the theoretical model 
Klingelé 1998). In geodesy, the gravity anomaly (
gravity on the geoid (gP) and normal gravity on the surface of the reference ellipsoid (
latitude. 

γ−=∆ Pgg

Geodesy requires gravity anomalies to be given on the geoid for the solution of the boundary value problem 
of physical geodesy, which is used to determine the figure of the Earth 

The artificial neural network (ANN) has been applied in diverse fields of science and engineering. ANN 
employments in geophysical gravity problems have increased in the last decade such as: determining depth of 
subsurface cavities from microgravity data 
al. 2006), sedimentary thickness variation 
anomalies (Abedi et al. 2010), and evaluation of gravity data in a geothermal area 

The objective of this paper is to evaluate the utility of ANN for calculating the gravity value as an 
alternative calculation tool for the geodetic applications. There are numerous kinds of neural networks. However, 
back propagation artificial neural ne
applications is used for the gravity field modelling in this paper. In order to assess the performance of BPANN, 
global geopotential models (GGMs) that are
calculating the gravity values, and the results are compared 
study area.  

The feed-forward and supervised learning ANN type, BPANN 
artificial neural approach of this paper. In the GGM approach, Earth Gravitational Model 2008 (EGM2008) 
(Pavlis et al. 2008) and European Improved Gravity model of the Earth by New techniques 2014 (EIGEN
(Förste et al. 2014) were used. The detailed theoretical information about these models is given below.

Back propagation artificial neural networks

BPANN is a widely used and effective multilayer perceptron (MLP) model due to their simple 
implementation and flexibility. BPANN arc
input variables to the problem, (ii) one or more hidden layers containing 
nonlinearity in the data and (iii) an output layer with 

All inter-neuron connections have been associated 
back propagation algorithm known as
applied to all neurons to generate the output information within a permissible amplitude range 
Santos 2007). The output of BPANN with a single output neuron (output la
i.e. n = 1) can be expressed by: 
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viable parameter for transforming ellipsoidal heights to orthometric heights and vice versa, and geoid modelling 
can only be done with measurements of the acceleration of gravity near the Earth’s surface 

value of gravity measured at a point on the Earth’s surface and the gravity calculated for the same 
location taking into account altitude, latitude, and topographical irregularities do not usually agree. The 
difference between the two is called gravity anomaly, and it represents the downward of the force of attraction 

underground distribution of masses differing from those of the theoretical model 
. In geodesy, the gravity anomaly (∆g) is defined as the scalar difference between the Earth's 

) and normal gravity on the surface of the reference ellipsoid (

γ                                                                                    
Geodesy requires gravity anomalies to be given on the geoid for the solution of the boundary value problem 

of physical geodesy, which is used to determine the figure of the Earth (Featherstone and Dentith
al network (ANN) has been applied in diverse fields of science and engineering. ANN 

employments in geophysical gravity problems have increased in the last decade such as: determining depth of 
subsurface cavities from microgravity data (Eslam et al. 2001), forward modelling of gravity anomaly 

, sedimentary thickness variation (Zaher et al. 2009), 2D inverse modelling of residual gravity 
, and evaluation of gravity data in a geothermal area (Kaftan 

The objective of this paper is to evaluate the utility of ANN for calculating the gravity value as an 
alternative calculation tool for the geodetic applications. There are numerous kinds of neural networks. However, 
back propagation artificial neural networks (BPANN) that have been more widely applied among all other ANN 
applications is used for the gravity field modelling in this paper. In order to assess the performance of BPANN, 
global geopotential models (GGMs) that are a representation of the earth gravity field are also used for 
calculating the gravity values, and the results are compared regarding the root mean square error (RMSE) over a 

 
Theoretical concepts 

 
forward and supervised learning ANN type, BPANN (Rumelhart et al. 

artificial neural approach of this paper. In the GGM approach, Earth Gravitational Model 2008 (EGM2008) 
and European Improved Gravity model of the Earth by New techniques 2014 (EIGEN

used. The detailed theoretical information about these models is given below.
 

Back propagation artificial neural networks 
 

BPANN is a widely used and effective multilayer perceptron (MLP) model due to their simple 
implementation and flexibility. BPANN architecture consists of (i) an input layer with K
input variables to the problem, (ii) one or more hidden layers containing q neurons to help capture the 
nonlinearity in the data and (iii) an output layer with n neurons representing the dependent variables (Fig. 1). 

 

 
 

Fig. 1.  The simple architecture of BPANN. 
 

neuron connections have been associated using synaptic weights that are adjusted by an iterative 
back propagation algorithm known as the training process.  After the training procedure, an activation function is 
applied to all neurons to generate the output information within a permissible amplitude range 

. The output of BPANN with a single output neuron (output layer represented by only one neuron, 
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viable parameter for transforming ellipsoidal heights to orthometric heights and vice versa, and geoid modelling 
can only be done with measurements of the acceleration of gravity near the Earth’s surface (Smith 2007). 

value of gravity measured at a point on the Earth’s surface and the gravity calculated for the same 
location taking into account altitude, latitude, and topographical irregularities do not usually agree. The 

omaly, and it represents the downward of the force of attraction 
underground distribution of masses differing from those of the theoretical model (Gret and 

difference between the Earth's 
) and normal gravity on the surface of the reference ellipsoid (γ) at the observation 

                                                                                                        (1) 
Geodesy requires gravity anomalies to be given on the geoid for the solution of the boundary value problem 

Dentith 1997). 
al network (ANN) has been applied in diverse fields of science and engineering. ANN 

employments in geophysical gravity problems have increased in the last decade such as: determining depth of 
forward modelling of gravity anomaly (Osman et 

, 2D inverse modelling of residual gravity 
(Kaftan et al. 2011).  

The objective of this paper is to evaluate the utility of ANN for calculating the gravity value as an 
alternative calculation tool for the geodetic applications. There are numerous kinds of neural networks. However, 

tworks (BPANN) that have been more widely applied among all other ANN 
applications is used for the gravity field modelling in this paper. In order to assess the performance of BPANN, 

gravity field are also used for 
the root mean square error (RMSE) over a 

 1987) was used in the 
artificial neural approach of this paper. In the GGM approach, Earth Gravitational Model 2008 (EGM2008) 

and European Improved Gravity model of the Earth by New techniques 2014 (EIGEN-6C4) 
used. The detailed theoretical information about these models is given below. 

BPANN is a widely used and effective multilayer perceptron (MLP) model due to their simple 
K neurons representing 

neurons to help capture the 
dependent variables (Fig. 1).  

synaptic weights that are adjusted by an iterative 
training process.  After the training procedure, an activation function is 

applied to all neurons to generate the output information within a permissible amplitude range (Leandro and 
yer represented by only one neuron, 
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where Wj is the weight between the j-th hidden neuron and the output neuron, wj,l is the weight between the l-th 
input neuron and the j-th hidden neuron, xl is the l-th input parameter, wj,0 is the weight between a fixed input 
equal to 1 and j-th hidden neuron and Wo is the weight between a fixed input equal to 1 and the output neuron 
(Valach et al. 2007). 

The sigmoid function is the most commonly used activation functions satisfying the approximation 
conditions of BPANN and is represented by (Beale et al. 2010): 

)1(1)( zezf −+=                                                                                                 (3) 
where z is the input information of the neuron and the Euler’s number, e, is the mathematical constant that is the 
base of the natural logarithm. The input and output values of BPANN have to be scaled in the range of  
f(z)Є [0, 1]. The back propagation algorithm based on squared error minimization corresponds to an adjustment 
of the weights between the hidden layer and the output layer. 

 
BPANN design and optimisation 

 
In this paper, BPANN is proposed according to the design and optimisation strategy followed by Yilmaz 

and Gullu (2014). The detailed information can be found in the relevant source and references therein. The 
parameters of BPANN of this paper are given in Table 1. 

 
Tab. 1.  The design and optimization parameters of BPANN. 

Parameters Settings 
Training algorithm Gradient descent   
Activation function Sigmoid   

Input-Hidden-Output neurons 3-19-1 
Early stopping Test data set 

Data pre-processing Min-max normalization 
Initial weight range [-0,25; 0,25] 
Learning rate (LR) 0,3 

LR decrease - increase 0,5 - 1,05 
Momentum term 0,6 

Performance function Mean square error 

 
 

Earth Gravitational Model 2008 
 

EGM2008 is a spherical harmonic model of the earth's external gravitational potential to degree and order 
2159, with additional spherical harmonic coefficients extending up to degree 2190 and order 2159. EGM2008 is 
primarily developed in ellipsoidal harmonics to degree and order 2160 and transformed to spherical harmonics. 
EGM2008 is developed by the least squares combination of the ITG-GRACE03S gravitational model and its 
associated error covariance matrix, with the gravitational information obtained from a global set of area-mean 
free-air gravity anomalies defined on a 5′ × 5′ grid. This grid was formed by merging terrestrial, altimetry-
derived, and airborne gravity data. Over areas where only lower resolution gravity data were available, their 
spectral content was supplemented with gravitational information implied by the topography. Over areas covered 
with high-quality gravity data, the discrepancies between EGM2008 geoid undulations and independent 
GPS/Levelling values are on the order of ±5 to ±10 cm. EGM2008 represents a milestone and a new paradigm in 
global gravity field modelling, by demonstrating for the first time ever, that given accurate and detailed 
gravimetric data, a single global model may satisfy the requirements of a very wide range of applications (Pavlis 
et al. 2012). 

 
European Improved Gravity model of the Earth by New techniques 2014 

 
The combined gravity field model EIGEN-6C4 is the latest combined global gravity field model up to 

degree and order 2190. EIGEN-6C4 is a combination of LAGEOS, GRACE RL03 GRGS, GOCE-SGG 
(November 2009 till October 2013) data plus 2′ × 2′ gravimetry and altimetry surface data (altimetry over the 
oceans, EGM2008 over continents). The combination of these different satellite and surface data sets has been 
done by a band-limited combination of normal equations, which are generated as a function of their resolution 
and accuracy (Förste et al. 2014). 



 

Study area, source data, evaluation methodology

Arizona, California, Nevada, and Utah states, located in the Pacif
are selected as the study area for the gravity calculations (Fig. 2). The study area is limited by the geographical 
boundaries: 31,0◦ ≤ ϕ ≤ 41,5◦ N; 237,5

Fig. 2.  The study area and the geographical point distribution (
 
The gravity field modelling refers to a source dataset in the study area that comprises 56 gravity points 

(stations) belonging to the GeoNet gravity database (http://gis.utep.edu/PACES.html) compiled by the U.S. 
Geological Survey, the National Geospatial
Agency), National Oceanic and Atmospheric Administration, industry and academic colleagues.  The default 
horizontal datum is North American Datum 1983
Geodetic Vertical Datum of 1929-
gravities are tied to the International Standardization Net 1971 (IGSN71) 
values include the Honkasalo correct

The source dataset (56 GeoNet points with observed gravity value) is classified into two groups as a 
reference dataset (32 points) for the training (modelling) process and a test dataset (24 points) for the accuracy 
assessment. The reference points are sel
selected as densification points of the network formed by the reference points. The geographical distribution of 
the reference and test points within the study area is plotted in Fig
are given in Table 2. 

 
Minimum 
Maximum 

Mean 
Std. Dev. 

 
The evaluation of gravity field modelling is focused on the residuals between the observed gravity and the 

gravity calculated by BPANN, EGM2008, and EIGEN
g Residual

For the statistical analysis of gravity residuals, the statistics (minimum, maximum, and mean) were 
determined and investigated by RMSE because RMSEs are sensitive to even small errors to measure the 
deviations between known and calculated disc
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Study area, source data, evaluation methodology 
 

Arizona, California, Nevada, and Utah states, located in the Pacific Southwest region of the United States, 
are selected as the study area for the gravity calculations (Fig. 2). The study area is limited by the geographical 

N; 237,5◦ ≤ λ ≤ 251,0◦ W with a rough (and mountainous) topography 

 

The study area and the geographical point distribution (∆; reference, ο; test)

The gravity field modelling refers to a source dataset in the study area that comprises 56 gravity points 
(stations) belonging to the GeoNet gravity database (http://gis.utep.edu/PACES.html) compiled by the U.S. 
Geological Survey, the National Geospatial-Intelligence Agency (formerly the National Image and Mapping 
Agency), National Oceanic and Atmospheric Administration, industry and academic colleagues.  The default 
horizontal datum is North American Datum 1983-NAD83 (WGS84), and the default vertical datum

-NGVD29 height above mean sea level on topographical maps. Observed 
gravities are tied to the International Standardization Net 1971 (IGSN71) (Morelli et al.
values include the Honkasalo correction (Honkasalo 1964) for tidal deformation (Hildenbrand 

 

 
 

Fig. 3.  The topography of the study area. 

 
The source dataset (56 GeoNet points with observed gravity value) is classified into two groups as a 

reference dataset (32 points) for the training (modelling) process and a test dataset (24 points) for the accuracy 
assessment. The reference points are selected to cover the study area from outside, and the validation points are 

as densification points of the network formed by the reference points. The geographical distribution of 
the reference and test points within the study area is plotted in Fig. 2 and the statistical values of these datasets 

Tab. 2.  The statistics of the datasets (units in mgal) 
Reference 
979004,928 979862,547
979974,574 979993,683
979511,607 979449,305

234,433 

The evaluation of gravity field modelling is focused on the residuals between the observed gravity and the 
gravity calculated by BPANN, EGM2008, and EIGEN-6C4: 

calculatedobserved gg −=                                                            
For the statistical analysis of gravity residuals, the statistics (minimum, maximum, and mean) were 

determined and investigated by RMSE because RMSEs are sensitive to even small errors to measure the 
deviations between known and calculated discharges on ANNs (Gullu et al. 2011). RMSE is defined by:
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ic Southwest region of the United States, 
are selected as the study area for the gravity calculations (Fig. 2). The study area is limited by the geographical 

W with a rough (and mountainous) topography (Fig. 3). 

 

; test). 

The gravity field modelling refers to a source dataset in the study area that comprises 56 gravity points 
(stations) belonging to the GeoNet gravity database (http://gis.utep.edu/PACES.html) compiled by the U.S. 

ntelligence Agency (formerly the National Image and Mapping 
Agency), National Oceanic and Atmospheric Administration, industry and academic colleagues.  The default 

NAD83 (WGS84), and the default vertical datum is National 
NGVD29 height above mean sea level on topographical maps. Observed 

et al. 1974). The IGSN71 
(Hildenbrand et al. 2002).   

The source dataset (56 GeoNet points with observed gravity value) is classified into two groups as a 
reference dataset (32 points) for the training (modelling) process and a test dataset (24 points) for the accuracy 

ected to cover the study area from outside, and the validation points are 
as densification points of the network formed by the reference points. The geographical distribution of 

. 2 and the statistical values of these datasets 

Test 
979862,547 
979993,683 
979449,305 

257,063 

The evaluation of gravity field modelling is focused on the residuals between the observed gravity and the 

                                                                       (4) 
For the statistical analysis of gravity residuals, the statistics (minimum, maximum, and mean) were 

determined and investigated by RMSE because RMSEs are sensitive to even small errors to measure the 
. RMSE is defined by: 
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where t is the number of the test points. 

 
Case study 

 
The reference points are used to train BPANN, and the test points are used to evaluate the performance of 

BPANN in ANN approach. In GGM approach, the reference points are used to generate the gravity field model 
of the study area. The accuracies of ANN and GGM approaches are assessed by using the test points. 

For the case study, BPANN with a single hidden layer is proposed with three neurons in the input layer and 
one neuron in the output layer. The geographical coordinates (ϕ, λ) and orthometric height (H) of the point are 
selected as input quantities, and the gravity (g) of the point (on the Earth’s surface) is used as output quantity for 
training and testing procedure of BPANN. A trial-and-error strategy was employed in order to determine the 
optimal number of the neurons in the hidden layer of BPANN, and, the optimal number of neurons in the hidden 
layer was selected as 19 for BPANN by a MATLAB ANN module that allows changing the parameters of 
BPANN dynamically. BPANN is trained by using the gravity values of the reference points. After the training 
procedure, the gravity values of the test points are calculated by using the trained BPANN.  

In GGM approach, the gravity field of the study area is generated from the reference dataset by Surfer 12 
surface modelling software. The gravity is defined as the magnitude of the gradient of the potential (including 
the centrifugal potential) at a given point. The gravity (on the Earth's surface) is calculated by the following 
equations: 

Φ+= aWW                                                                                                         (6) 

where W, is the potential associated with the rotating Earth; Wa, is the attraction potential; and Φ, is the 
centrifugal potential. 

W ∇=g                                                                                                               

(7) 
where g, is the gradient of the potential W. 
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The derivatives of Eq. (8) in spherical harmonics are: 
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The derivatives of centrifugal potential are:  

( ) ϕϕωϕω ϕλ sin cosr-   ;0   ;cos 2222 =Φ=Φ=Φ rr                                           (10) 

The notations are: (r, ϕ, λ), spherical geocentric coordinates of computation point (radius, longitude, 
latitude); GM, product of the gravitational constant and the mass of the Earth; R, reference radius; l, m, degree, 
order of spherical harmonic; Plm, fully normalised Lengendre functions; CW

lm, SW
lm, Stokes’ coefficients of the 

disturbing potential (fully normalised); ω, angular velocity of the Earth (Barthelmes 2013). The gravity, |∇W|, is 
calculated from Eq.s (9) and (10).    

The gravity values of the test points were computed from this (reference) gravity field. The gravity values 
based on GGMs are interpolated from the closest grid points by Kriging method using software and coefficients 
obtained from International Centre for Global Earth Models (ICGEM) (http://icgem.gfz-potsdam.de/ICGEM).    

 
Results and conclusions 

 
The statistical values of the gravity residuals associated with the test data set are presented in Table 3. The 

model representations have been adopted for the comparative evaluation of BPANN and GGMs by producing 



 

residual maps. The gravity residual maps of the test points associated with BPANN, EGM2008 and EIGEN
are given in Figures 4, 5, and 6, respectively.   

When the results summarized in Table 3 are evaluated, it can be seen from Fig
calculated the point gravities more accurately in the study area, with respect to EGM2008 and  EIGEN
terms of RMSE. BPANN has an increasing gravity residual sequence over areas where only poor gravity data 
were available. Whereas, EGM2008 and EIGEN
sea, and at the mountainous areas (H 

Tab. 3
 BPANN

Min. -40,691
Max. 52,692
Mean 13,701
RMSE 30,047

 
• The objective of this paper was to evaluate the utility of

geodetic applications. Based on the 
conclusions can be drawn: 

• (1) ANN can be considered as 
calculated the gravity with a better accuracy (
its model-free estimation. 
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residual maps. The gravity residual maps of the test points associated with BPANN, EGM2008 and EIGEN
s 4, 5, and 6, respectively.    

 

 
Fig. 4.  The gravity residual map of BPANN  

 

 
Fig. 5.  The gravity residual map of EGM2008 

 

 
Fig. 6.  The gravity residual map of EIGEN-6C4 

 
When the results summarized in Table 3 are evaluated, it can be seen from Figures 4, 5, and 6 that BPANN 

calculated the point gravities more accurately in the study area, with respect to EGM2008 and  EIGEN
terms of RMSE. BPANN has an increasing gravity residual sequence over areas where only poor gravity data 

ereas, EGM2008 and EIGEN-6C4, similarly, have an increasing gravity residual sequence at 
sea, and at the mountainous areas (H >1000 m.)   

 
Tab. 3.  The statistics of the gravity residuals (units in mgal.). 

BPANN EGM2008 
40,691 -66,700 
52,692 96,547 
13,701 12,601 
30,047 38,981 

this paper was to evaluate the utility of ANN for the gravity field modelling for the 
geodetic applications. Based on the qualitative and quantitative results of this paper, the

(1) ANN can be considered as a feasible gravity calculation tool for the geodetic applications. BPANN 
calculated the gravity with a better accuracy (in terms of RMSE) when it is compared to GGMs, because of 
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residual maps. The gravity residual maps of the test points associated with BPANN, EGM2008 and EIGEN-6C4 

4, 5, and 6 that BPANN 
calculated the point gravities more accurately in the study area, with respect to EGM2008 and  EIGEN-6C4, in 
terms of RMSE. BPANN has an increasing gravity residual sequence over areas where only poor gravity data 

6C4, similarly, have an increasing gravity residual sequence at 

EIGEN-6C4 
-76,624 
91,653 
13,668 
41,135 

ANN for the gravity field modelling for the 
quantitative results of this paper, the following 

gravity calculation tool for the geodetic applications. BPANN 
mpared to GGMs, because of 
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• (2) EGM2008 has better statistics than EIGEN-6C4. EGM2008 can be used as a reference earth 
geopotential model for a further gravity calculation at regional and national scales in the USA.  

• (3) With more dense gravity stations and with improved geographical coverage, more accurate gravity field 
modelling can be expected from BPANN and also GGMs. 

• (4) The combination of diverse ANNs (e.g., different training algorithms and activation functions, 
additional hidden layers and neurons) as a trend surface approximator with GGMs would be an appealing 
tool for gravity field modelling, because of ANN’s adaptive ‘learning by example’ feature. 

• For ANN applications, there is no need to incorporate any assumptions about the frequency distribution of 
the data (i.e., the normal distribution of the data in geodetic problems). Besides, ANN can always be 
updated with new training data to obtain better results. In this regard, ANN outstands from GGMs. Despite 
the feasibility of ANN for gravity calculation, improving extrapolation ability, and dealing with uncertainty 
should receive further attention in the future studies. 
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