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Application of back propagation artificial neural networks
for gravity field modelling

Bayram Turgut®

Geodesy provides a unique framework for the manigprunderstanding and prognosis of the Earth systes a whole, globally as
well as locally. This understanding of geodesyaised on the three pillars: (i) geokinematics, Egrth rotation, and (iii) gravity field. The
third pillar of geodesy refers to the knowledgetaf geometry of the gravity field of the Earth. Tnavity field of the Earth addresses the
problems of the transformation of geodetic obséovest made in physical space (affected by gravityd igeometrical space in which
positions are usually defined. In addition, thegbsof equipotential surfaces and plumb lines aeded for projects involving the physical
environment (e.g., flow of water). In this papée utility of Back Propagation Artificial Neural Weork (BPANN) more widely applied in
diverse fields of science among all other neuraivoek models is investigated as an alternative foolgravity field modelling. In order to
evaluate the performance of BPANN, the gravity eslare also calculated by global geopotential medEIGM2008 and EIGEN-6C4). The
results are compared in terms of the root mean sgearor (RMSE) over a study area. It was conctltieat the employment of BPANN
can be a feasible gravity calculation tool for tpeodetic application.

Keywords: back propagation artificial neural networks, grgvbn the Earth’s surface, geopotential model, EGM® EIGEN-6C4.

Introduction

Geodesy is the science of determining - repredentétte geometry, gravity field, and rotation oé tharth
and their evolution in a 3D time-varying space.sTinnderstanding of modern geodesy is based orefivdtibn
of the three pillars of geodesy: (1) geokinemat(2} Earth rotation, and (3) gravity field (Plagal. 2009). The
third pillar of this characterization of geodesyers to the knowledge of the geometry of the gyafiéld of the
Earth. The gravity field of the Earth addressespifublems of the transformation of geodetic obstoua made
in physical space (affected by gravity) into geamat space in which positions are usually definadaddition,
the shapes of equipotential surfaces and plumis Eme needed for projects involving the physicairenment
(e.g., flow of water). Consequently, geodesy alsmitors the variability of the gravity field (Dehag005).
Besides geodesy, the knowledge about the Eartlgitgrfield essentially supports research actigitia
geophysics and geology. At regional scales, gradéta are useful in determining the shape of thehEan
accounting for the orbits of satellites, determinithhe Earth's mass and moment of inertia, and aiimap
geophysical mapping and interpretation of lithosmhstructure and geodynamic processes. In localists of
the upper crust, gravity data can effectively adsli@ broad range of basic geologic questions, efgingeologic
features related to natural hazards (faults, valeanlandslides), and aid in the search for naw@sbdurces
(groundwater, oil, gas, minerals, geothermal enefidildenbrandet al. 2002).

Until a global geodetic datum is fully and formakygcepted, used, and implemented worldwide, global
geodetic applications require three different stefato be clearly defined: (i) the irregular topggric surface
(the landmass topography as well as the ocean inathy), (i) a geometric or mathematical referesoeface
called the ellipsoid, (iii) the geoid, the equipaial surface coinciding with mean sea level ataocélLi and
Gotze 2001).

Gravity has an inseparable connection with theseetlsurfaces. Accurate gravity data are the foummlat
for the determination of “heights”. Geodesists aldte the height of locations on the Earth's serfagsed on
the mean sea level. So knowing how gravity changes, level helps geodesists make more accurate
measurements. Gravity corrections and gravity atiesdnave been traditionally defined with respexthe
height.

Due to space-based techniques, in particular, fdespread use of Global Navigation Satellite System
(GNSS) for determining fast and accurate ellipsdigéghts (referenced to a reference ellipsoid)ehacited the
need for a similarly fast and accurate determimatié orthometric heights related to the geoid (jxtaly
meaningful surface). Ellipsoidal heights cannotbed to determine where water will flow, and therefare not
used in topographic/floodplain mapping. Orthometr@ights have a very strong correlation (>99%) wita
direction of water flow and are more useful (ane eolloquially-although not quite appropriatelyaetd to by
the more common term “height above sea level”). ftation between the ellipsoidal and orthometgghts is
the height of the geoid above the reference elilijss usually called the geoid undulation. Theideis the
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viable parameter for transforming ellipsoidal heggto orthometric heights and vice versa, and gemdelling
can only be done with measurements of the acciarat gravity near the Earth’s surfa(Smith 2007).

The value of gravity measured at a point on the Earthiface and the gravity calculated for the s
location taking into account altitude, latitude,datopographical irregularities do not usually agrdée
difference between the two is called gravitomaly, and it represents the downward of the fafcattraction
produced by thainderground distribution of masses differing frooge of the theoretical mod(Gret and
Klingelé 1998) In geodesy, the gravity anomaldg) is defined as the scaldifference between the Eartl
gravity on the geoidge) and normal gravity on the surface of the refeeeattipsoid J) at the observation
latitude.

Ag=gp -y (1)

Geodesy requires gravity anomalies to be giverhergeoid for the solution of the boundary valuebpgm
of physical geodesy, which is used to determindithee of the Eartl(Featherstone ardentitk 1997).

The artificial neual network (ANN) has been applied in diverse fietdsscience and engineering. AN
employments in geophysical gravity problems hawgeased in the last decade such as: determininigp aé
subsurface cavities from microgravity d(Eslamet al. 2001),forward modelling of gravity anoma(Osmanet
al. 2006) sedimentary thickness variatic(Zaher et al. 2009) 2D inverse modelling of residual grav
anomalies (Abedet al.2010) and evaluation of gravity data in a geothermeah(Kaftanet al.2011).

The objective of this paper is to evaluate theitytibf ANN for calculating the gravity value as
alternative calculation tool for the geodetic apglions. There are numerous kinds of neural netsvdikbwever
back propagation artificial neuraltworks (BPANN) that have been more widely applietbag all other ANN
applications is used for the gravity field modedlim this paper. In order to assess the performah@&PANN,
global geopotential models (GGMs) that a representation of the eargnavity field are also used fi
calculating the gravity values, and the resultscamparecregardingthe root mean square error (RMSE) ov
study area.

Theoretical concepts

The feedforward and supervised learning ANN type, BPAIN(Rumelhartet al. 1987) was used in the
artificial neural approach of this paper. In the @pproach, Earth Gravitational Model 2008 (EGM2(C
(Pavliset al. 2008)and European Improved Gravity model of the EartiNew techniques 2014 (EIGI-6C4)
(Forsteet al 2014) weraused. The detailed theoretical information aboeséhmodels is given belc

Back propagation artificial neural networks

BPANN is a widely used and effective multilayer gagtron (MLP) model due to their simg
implementation and flexibility. BPANN ahitecture consists of (i) an input layer withneurons representing
input variables to the problem, (i) one or morald@n layers containing neurons to help capture t
nonlinearity in the data and (iii) an output layéth n neurons representing tdependent variables (Fig. :
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Fig. 1. The simple architecture of BPANN.

All inter-neuron connections have been associusingsynaptic weights that are adjusted by an itere
back propagation algorithm known thetraining process. After the training procedureaativation function i
applied to all neurons to generate the output médion within a permissible amplitude ran(Leandro and
Santos 2007)The output of BPANN with a single output neurauitput leyer represented by only one neur
i.e.n=1) can be expressed by:

q K
y= f{zwj f[ZWj 15 W, ,o] +Wo]
=1 =

(2)
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whereW is the weight between theh hidden neuron and the output neuran,is the weight between theh
input neuron and theth hidden neurony, is thel-th input parameteny;, is the weight between a fixed input
equal to 1 angrth hidden neuron and, is the weight between a fixed input equal to 1 #edoutput neuron
(Valachet al.2007).

The sigmoid function is the most commonly used vatibn functions satisfying the approximation
conditions of BPANN and is represented by (Beslal. 2010):

f@=1Ya+e?) @)
wherez is the input information of the neuron and thedf'slnumberg, is the mathematical constant that is the
base of the natural logarithm. The input and outyalties of BPANN have to be scaled in the range of

f(z)€ [0, 1]. The back propagation algorithm based orasegh error minimization corresponds to an adjustmen
of the weights between the hidden layer and thputudyer.

BPANN design and optimisation
In this paper, BPANN is proposed according to theigh and optimisation strategy followed by Yilmaz

and Gullu (2014). The detailed information can barnid in the relevant source and references thefdia.
parameters of BPANN of this paper are given in &dbl

Tab. 1. The design and optimization paramete BRANN.

Parameters Settings
Training algorithm Gradient descent
Activation function Sigmoid

Input-Hidden-Output neurons 3-19-1
Early stopping Test data set

Data pre-processing Min-max normalization
Initial weight range [-0,25; 0,25]
Learning rate (LR) 0,3

LR decrease - increase 0,5-1,05

Momentum term 0,6
Performance function Mean square error

Earth Gravitational M odel 2008

EGM2008 is a spherical harmonic model of the emgternal gravitational potential to degree argkopr
2159, with additional spherical harmonic coefficeaxtending up to degree 2190 and order 2159. HIBBI%
primarily developed in ellipsoidal harmonics to cksyand order 2160 and transformed to sphericahdwics.
EGM2008 is developed by the least squares combimatf the ITG-GRACEQ3S gravitational model and its
associated error covariance matrix, with the getizcinal information obtained from a global set odaamean
free-air gravity anomalies defined on a>x65 grid. This grid was formed by merging terrestrialtimetry-
derived, and airborne gravity data. Over areas avloaly lower resolution gravity data were availaliteeir
spectral content was supplemented with gravitatioriarmation implied by the topography. Over areasered
with high-quality gravity data, the discrepanciestvieen EGM2008 geoid undulations and independent
GPS/Levelling values are on the ordet6fto+10 cm. EGM2008 represents a milestone and a neadiggn in
global gravity field modelling, by demonstratingr fthe first time ever, that given accurate and itksta
gravimetric data, a single global model may satibf/requirements of a very wide range of applicegi(Pavlis
et al.2012).

European | mproved Gravity model of the Earth by New techniques 2014

The combined gravity field model EIGEN-6C4 is tlaekt combined global gravity field model up to
degree and order 2190. EIGEN-6C4 is a combinatib AGEOS, GRACE RL03 GRGS, GOCE-SGG
(November 2009 till October 2013) data plusx22 gravimetry and altimetry surface data (altimetweiothe
oceans, EGM2008 over continents). The combinatiothese different satellite and surface data sassbeen
done by a band-limited combination of normal equadj which are generated as a function of thewluéisn
and accuracy (Forseg al. 2014).
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Study area, sour ce data, evaluation methodology

Arizona, California, Nevada, and Utah states, ledah the Pacic Southwest region of the United Stat
are selected as the study area for the gravitwlzlons (Fig. 2). The study area is limited by te®graphica
boundaries: 31,& ¢ < 41,5N; 237, < A < 251,0W with a rough (and mountainous) topogra|(Fig. 3).
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Fig. 2. The study area and the geographical point distitu{4; reference o; test.

The gravity field modelling refers to a source datain the study area that comprises 56 gravitytp
(stations) belonging to the GeoNet gravity datab@dstp://gis.utep.edu/PACES.html) compiled by theSl
Geological Survey, the National Geosp«Intelligence Agency (formerly the National Image avidpping
Agency), National Oceanic and Atmospheric Admimistn, industry and academic colleagues. The dte
horizontal datum is North American Datum 1-NAD83 (WGS84), and the default vertical da is National
Geodetic Vertical Datum of 1929GVD29 height above mean sea level on topographitaps. Observe
gravities are tied to the International StandatibraNet 1971 (IGSN71(Morelli et al. 1974). The IGSN71
values include the Honkasalo corion (Honkasalo 1964) for tidal deformati¢ifildenbrandet al. 2002).
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Fig. 3. The topography of the study area.

The source dataset (56 GeoNet points with obsegradity value) is classified into two groups a:
reference dataset (32 points) for the training (efloty) process and a test dataset (24 pointsjhferaccurac
assessment. The reference points alected to cover the study area from outside, andrdlidation points ar
selectedas densification points of the network formed bg teference points. The geographical distributib
the reference and test points within the study &rgdotted in Fi. 2 and the statistical values of these date

are given in Table 2.
Tab. 2. The statistics of the datasets (units in mgal)

Reference Test
Minimum 979004,928 979862,54
Maximum 979974,574 979993,68
Mean 979511,607 979449,30
Std. Dev. 234,433 257,063

The evaluation of gravity field modelling is focalsen the residuals between the observed gravityttae
gravity calculated by BPANN, EGM2008, and EIG-6C4:

ReSiduab = gobser\/ed_ gcalculated (4)

For the statistical analysis of gravity residualse statistics (minimum, maximum, and mean) v
determined and investigated by RMSE because RM3€&ssensitive to even small errors to measure
deviations between known and calculatedharges on ANNs (Gullet al.2011) RMSE is defined b
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RMSE= \/%i(Residuabi)z
i=1 (5)

wheret is the number of the test points.
Case study

The reference points are used to train BPANN, &edtést points are used to evaluate the performaince
BPANN in ANN approach. In GGM approach, the refeepoints are used to generate the gravity fieldeho
of the study area. The accuracies of ANN and GGpt@gches are assessed by using the test points.

For the case study, BPANN with a single hidden dayeroposed with three neurons in the input layet
one neuron in the output layer. The geographicatdioates ¢, A) and orthometric height (H) of the point are
selected as input quantities, and the gravity {gh® point (on the Earth’s surface) is used apuauguantity for
training and testing procedure of BPANN. A trialdag@rror strategy was employed in order to deterntire
optimal number of the neurons in the hidden layeB®ANN, and, the optimal number of neurons in tigden
layer was selected as 19 for BPANN by a MATLAB ANnbdule that allows changing the parameters of
BPANN dynamically. BPANN is trained by using theagity values of the reference points. After thenirsg
procedure, the gravity values of the test poingscaltculated by using the trained BPANN.

In GGM approach, the gravity field of the studyaaie generated from the reference dataset by Siefer
surface modelling software. The gravity is defiremdthe magnitude of the gradient of the potenimalding
the centrifugal potential) at a given point. Thegty (on the Earth's surface) is calculated by fihllowing
equations:

W=W, +d (6)
where W, is the potential associated with the rotatingtlEaw,, is the attraction potential; an@, is the
centrifugal potential.

g=|0W|

(7)
whereg, is the gradient of the potenthal.

|ow]| =\/[War +o,? {

1qu (W, + o, )T {%(\NM, +q>¢)}2

I co
(8)
The derivatives of Eq. (8) in spherical harmonies a
oM 'max g [
Wy ==— " (—j (1+2) )" Am(sing)(Ciy cosmi + S sinmA)
re o \r =
1=0 m=0
Imax/ oy |
W, = % [Bj MR sing)(SY cosmt - sinmi) 9)
1=0 m=0

Imax Il :
Wa¢ :ﬂ Z (Bj ZM(CW Cosm/]+sm Sinrn/])
r i\ 99
The derivatives of centrifugal potential are:

®, = wzr(cos;z))z; D, =0 Py = -w?r’cosp sing (10)

The notations are:r( ¢, A), spherical geocentric coordinates of computagaint (radius, longitude,
latitude); GM, product of the gravitational constant and thesrasthe EarthR, reference radiug; m, degree,
order of spherical harmoni®,,, fully normalised Lengendre function8”,, S"m Stokes’ coefficients of the
disturbing potential (fully normalisedyy angular velocity of the Earth (Barthelmes 2013)e gravity,|0W|, is
calculated from Eq.s (9) and (10).

The gravity values of the test points were compditech this (reference) gravity field. The gravitplues
based on GGMs are interpolated from the closedtmpints by Kriging method using software and cieafhts
obtained from International Centre for Global Eavtbdels (ICGEM) (http://icgem.gfz-potsdam.de/ICGEM)

Results and conclusions

The statistical values of the gravity residualaisged with the test data set are presented iteTabrhe
model representations have been adopted for th@a@rive evaluation of BPANN and GGMs by producing
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residual maps. The gravity residual maps of thepesits associated with BPANN, EGM2008 and EI(-6C4
are given in Figure4, 5, and 6, respectively
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Fig. 4. The gravity residual map of BPANN
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Fig. 5. The gravity residual map of EGM2008
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Fig. 6. The gravity residual map of EIGEN-6C4

When the results summarized in Table 3 are evaly#tean be seen from fures4, 5, and 6 that BPANI
calculated the point gravities more accuratelyhim $tudy area, with respect to EGM2008 and EI-6C4, in
terms of RMSE. BPANN has an increasing gravitydeal sequence over areas where only poor gravigy
were available. Wreas, EGM2008 and EIGI-6C4, similarly, have an increasing gravity residseduence ¢
sea, and at the mountainous area>1000 m.)

Tab. & The statistics of the gravity residuals (units igat).
BPANN EGM 2008 EIGEN-6C4
Min. -40,69: -66,700 -76,624
Max. 52,69: 96,547 91,653
Mean 13,70: 12,601 13,668
RM SE 30,04° 38,981 41,135

* The objective ofthis paper was to evaluate the utility ANN for the gravity field modelling for th

geodetic applications. Based on tqualitative andquantitative results of this paper,
conclusions can be drawn:

following

e (1) ANN can be considered a feasiblegravity calculation tool for the geodetic applicais. BPANN
calculated the gravity with a better accurain terms of RMSE) when it is capared to GGMs, because

its model-free estimation.
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* (2) EGM2008 has better statistics than EIGEN-6C&MR008 can be used as a reference earth
geopotential model for a further gravity calculatat regional and national scales in the USA.

« (3) With more dense gravity stations and with inyaa geographical coverage, more accurate grawtg fi
modelling can be expected from BPANN and also GGMs.

e (4) The combination of diverse ANNs (e.g., diffaremaining algorithms and activation functions,
additional hidden layers and neurons) as a trenfdci approximator with GGMs would be an appealing
tool for gravity field modelling, because of ANNBslaptive ‘learning by example’ feature.

e For ANN applications, there is no need to incorpmi@ny assumptions about the frequency distributfon
the data (i.e., the normal distribution of the datageodetic problems). Besides, ANN can always be
updated with new training data to obtain betteultesIn this regard, ANN outstands from GGMs. Ogsp
the feasibility of ANN for gravity calculation, innpving extrapolation ability, and dealing with untzenty
should receive further attention in the future gad
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