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One of such transformation methods, the two-dimensional similarity transformation, is widely used in geodetic studies. The outliers in 
the measure group should be detected so that the model established during the transformation process gives accurate results. In 
transformation practices, conventional outlier detection test procedures based on the least squares estimation (LSE) and robust estimation 
methods are widely used for the detection of outliers. The aim of this study was to compare performances of the result data obtained by 
multilayer perceptron artificial neural networks (MLPNNs) including various activation functions and training algorithms of artificial 
neural networks (ANNs), which has recently begun to be widely used in scientific studies and engineering fields, and of the result data 
obtained using various methods to detect outliers in two-dimensional similarity transformation process between two different coordinate 
systems. In ANNs consisting of three layers, eight different network configurations were generated using different activation functions and 
training algorithms. The coordinates of the control points calculated by two-dimensional similarity and ANNs methods were compared with 
known coordinate values. Differences between the coordinates calculated using two-dimensional similarity transformation and eight 
different network configurations and the coordinates of control points were examined in terms of the root mean square error, and network 
configuration which uses a combination of 'tansig-purelin' activation functions and Bayesian regulation algorithm provided the best result. 
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1. Introduction  
 

In addition to exploration of metallic mines, industrial raw materials, natural gas, coal, oil and underground 
water, maps produced at various scales serve as a basis for various engineering projects such as railways, 
highways, subway, dams and tunnels. It is necessary to produce geological maps responding to the needs to 
monitor the geological features and underground resources of a country. Coordinate systems are important for 
maps to gain numerical meaning. Transformation between coordinate systems is a necessity for the association 
of geological maps produced in local or national coordinate systems (such as NAD27 and ED50) and global 
coordinate systems (such as ITRF-yy and WGS84). Selection of the transformation method depends on 
the purpose of transformation and the number of known common points in both systems (Ghilani & Wolf, 2006). 
In two-dimensional systems, mostly similarity, affine and projective transformation methods are used as 
the transformation method. In geodetic studies, excessive measurements are made to increase the accuracy of 
the  measurements. The relationship between a large number of measurements is established by adjustment 
theory. Precise values and sensitivity of the measurements are calculated by least squares estimation (LSE). In 
addition to gross and systematic errors in the measurement group, there can also be unidentifiable measurement 
errors in the measurement group. Measurements containing such measurement errors in the measurement group 
are called outliers. Detection of outliers is usually performed by conventional outlier detection test procedures 
based on LSE. Disadvantages of conventional outlier detection test procedures led to the search for other 
methods. In literature, there are many studies on conventional outlier detection test procedures (Berberan, 1995; 
Kok, 1984; Pope, 1976; Schwarz & Kok, 1993; Knight & Wang, 2009). An alternative method for detecting 
outliers in the measurement group is robust estimation (Hampel, Ronchetti, Rousseeuw & Stahel, 1986; Huber, 
1981; Jurecková & Sen, 1996). Artificial neural networks (ANNs) have recently begun to be widely used in 
scientific studies and engineering fields. ANNs began to be employed in Geodesy, and it is possible to see them 
in various studies (Schuh, Ulrich, Egger, Müller & Schwegmann, 2002; Zaletnyik, 2004; Kavzoglu & Saka, 
2005; Lin, 2007; Tierra, Dalazoana & De Freitas, 2008; Gullu & Yilmaz, 2010; Turgut, 2010). 

The aim of this study was to compare performances of the result data obtained by multilayer perceptron 
artificial neural networks (MLPNNs) including various activation functions and training algorithms, and of 
the result data obtained using various methods to detect outliers in two-dimensional similarity transformation 
process between two different coordinate systems. In the two-dimensional similarity transformation, t-test, one 
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of conventional outlier tests, and Andrews, Beaton-Tukey and Danish M-Estimations, which are robust 
estimation methods, were employed to carry out transformation process. In ANN application, tanjant-sigmoid 
(tansig), logarithmic-sigmoid (logsig) and linear (purelin) were used as activation functions, while Levenberg-
Marquardt and Bayesian regulation were used as training algorithms. The resulting values were analyzed in 
terms of the root mean square error (RMSE) of the coordinate differences. 
 

2. Methods 
 

2.1. Two-Dimensional Similarity Transformation 
The relationship between two coordinate systems can be expressed geometrically with the aid of points 

known as common to both systems. Two-dimensional similarity transformation has a total of 4 parameters, 
including 1 scale, 1 rotation, and 2 translations. Therefore, the relationship between the two coordinate systems 
requires minimum 2 points known in both systems (Eq. 1). The two-dimensional similarity transformation is 
applied to two-dimensional coordinates between two coordinate systems by; 

 � = �� − �� + 	 
 = �� + �� + � 
 

  (1) 

where, �, � is the first coordinate system, �, 
 is the second coordinate system, �, �, 	 and � coefficients are 
transformation parameters. 

If the number of common points in both systems is high, transformation parameters are calculated by 
the method of LSE. The matrix representation can be written as (Eq. 2); 
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where, � is the vector of the unknown parameters  and  calculated by the equation � = !�"#�$%��"#�, � is 
the coefficients matrix, # is the weight matrix, � is the vector of residuals and � is the translation vector. 

 
2.2. Conventional Outlier Detection Methods 
In geodetic studies, outliers are usually detected by a conventional outlier detection test procedures based 

on LSE. Reasons to prefer this method include simple calculation algorithm, no need to know the statistical 
distribution of observations, and stability of mathematical and functional models throughout the calculation. 
Outliers are detected iteratively and removed from the measurement group, which means ignoring 
the information contained in the measurement. Due to the propagation effect of LSE, an error in any of 
the measurements can also be reflected in the adjustment of other measurements. In order to test whether there is 
any outlier in the measurement group as a result of balancing calculation; 

 &' = ()*+,- = 0 &. = ()*+,- ≠ 0 
 (3) 

 
zero and differ from zero as the alternative hypothesis is established for gross error (Eq. 3).  Hypothesis testing is 
performed using adjustment values introduced to the measurements. A test value is calculated for each 
adjustment value. This value is compared with the limit value determined according to the degree of freedom 
from the table which the distribution of the measurements matches. Any measurement with a test value larger 
than the limit value is considered an outlier and removed from the measurement group. This process continues 
iteratively until there is no outlier in the measurement group. Three different approaches are used in conventional 
solution methods: Data-Snooping (DS), Tau and t (student) tests (Gökalp, Güngör & Boz, 2008). 

If the a priori variance is not known or a value cannot be assigned to it before adjustment, the a priori 
variance 0'1	is calculated after adjustment. 0231 is the a posteriori variance calculated from the residuals free 
from the model errors. 
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Tab. 1.  Test statistic, test distribution and critical value. 
Test Test Statistic Test Distribution Critical Value 

Data-Snooping 
!#	�,$4'5!#	677#$,,	 ~9!0,1$	 9!�%;< 1$⁄ 	

Tau 
!#	�,$0'5!#677#$,,	 ~>?,!�%;< 1$⁄ 	 >?,!�%;< 1$⁄ 	

t 
!#	�,$02'5!#677#$,,	 ~@?%�,!�%;< 1$⁄ 	 @?%�,!�%;< 1$⁄ 	

 
In Table 1, P is the weight matrix, Vi is the residuals vector, s0 is the a priori standard deviation of unit 

weight, f  is the degree of freedom, QVV is the cofactor matrix of the residuals, a0 is the significance level, N 
represents normal distribution, τ represents tau test and t represents student test. The significance level is usually 
chosen as 5 % (Ghilani & Wolf, 2006; Biacs, Krakiwsky & Lapucha, 1990). 

 
2.3. Robust Estimation Methods 
LSE is mostly criticized due to its sensitivity to measurements with a gross error. In this case, robust 

estimation methods capable of detecting outliers in the measurement group in a more effective way are preferred. 
Robust estimator functions can be typically classified as M-, R- and L-Estimators used in statistical analyses. As 
M-Estimators, there are many methods in the literature. Normal distribution of geodetic methods facilitates 
widespread use of M-Estimators, which require the knowledge of premise distributions (Ince, Konak & Arslan, 
2008). 

In robust estimation, rather than the score function �"#� = min used in the LSE, another A!�$which is less 
affected by the errors of corrections is selected as the score function. A solution that makes the selected score 
function minimum is sought. Solution process is performed as in equation (Eq. 4). 

 

BA!�,$ = 0CD�
,E�  

  (4) 

 
The condition in which the score function is minimum is obtained by taking the derivative with respect to � 

values in the equation. The solution of resulting non-linear equation is iterative. In robust estimation,             				F!�,$ = GH!�,$ G�,⁄  influence function is obtained by taking the derivative of the score function A!�,$ with 
respect to corrections. Weight function I!�$ = F!�$ �⁄  is obtained by dividing the influence function by 
corrections. The estimation process is performed as in equation (Eq. 5);  

 �J, = !�"I2,�$%�	�"I,� �, = ��J, − � I2, = #I,%�	,					C = 1,2, … , D 

  (5) 

 
where, I2, 	is the equivalent weight matrix, # is the first weight matrix of the measurements,	I, is the robust 

weight factor, D is the number of measurements and C is the iteration number. The weight matrix # in the first 
iteration can either be a unit matrix or estimated premise weight matrix. The iterations continue until 
the difference between �J,M�and �J, are negligible. As a result of the iterations, equivalent weights of outliers 
become smaller, or even reduced to zero. This means that the negative effect of the outliers in the measurement 
group of the unknowns decreases (Gökalp et al., 2008). The reliability of the results obtained from robust 
estimations depends on accurate selection as much as possible of the critical value with which the correction 
values of the measurements are compared (Tab. 2). In the literature search, it was found that the limit parameter 
value 	 is not a fixed number, and it was concluded that the limit value is selected based on experiences.     
              

Tab. 2.  The weight function of the M-Estimations. 
M-Estimation Weight Function Critical Value 

Andrews I, = N4CD �,	 O�,	 P
%�

0 Q	 |�,| ≤ 	T|�,| > 	T	
Beaton-Tukey I, = VW1 − O�,	 P

1X1
0

Q	 |�,| ≤ 	|�,| > 		
Danish I, = VY�H Z−�,

1
	1 [1 Q	 |�,| > 	|�,| ≤ 		
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2.4. Artificial Neural Networks 
Artificial neural networks can be defined as computer programs that mimic the human brain, which has 

the ability to process even non-linear information at a high-performance. In addition, ANNs can be considered as 
a parallel information processing system in a sense. In contrast to the complexity of the human brain, they have 
a much simpler structure. Nerve cells are grouped into layers, creating ANNs.  

Multilayer perceptron neural networks (MLPNNs) are the most commonly used feed-forward neural 
networks. A MLPNN consists of three types of layers: the input layer, one or more hidden layers and the output 
layer, as shown in Fig.1. The input layer is the layer where data is presented to the network. The number of 
neurons in this layer equals to the number of input data. In this layer, the data obtained from outside are not 
processed; the layer is only obliged to write the data and communicate it to the hidden layer. Hidden layer is 
the layer where the data from the input layer is processed. In some networks, the number of hidden layers and 
the number of neurons in the hidden layer may change  depending on the problem. Output layer is the final layer 
of the network. It provides output by processing the data received from the hidden layer with the function used. 
The number of neurons equals the number of data presented in input layer at the output. It is the layer that 
generates the result value using the data from the hidden layer (Hornik, Stinchcombe & White, 1989).  

Weights are the parameters indicating the importance and effect in the cell of data entering the network. 
Each input data has a weight of its own. Hence, each input data ismultiplied by its own weight; the product is 
added to error value and sent to the activation function in order to calculate the output value (Eq. 6); 

 

9, = \B I,]̂�,̂ %� +I'
�_`�
]E� a   (6) 

 
where, �, is the input neuron, I,]̂  is the weight coefficient of each input neuron, I' is the bias, C is the unit 
number of !b − 1$th layer and c is the unit number of bth layer. 

The back-propagation (BP) algorithm reduces the errors from output to input, which is why it is called 
“back-propagation algorithm”. It is an easy to understand and preferred learning algorithm. The algorithm is 
used to recalculate the weights in each layer according to the existing level of error in the network output. BP 
algorithm is generally used for multilayer networks, rather than single layer networks (Fig. 1). 

 

 
Fig.1.  A typical example of a multilayer neural network. 

 
The relationship between input data and output data is based on training the network and determining 

the optimum values of the weight values of the network. Training algorithms calculate the weights which will 
minimize differences between output values produced by the network 9, and the actual values 9;def;g. The error 
of the network is calculated by Eq. 7 and then weights and bias are updated iteratively until the error approaches 
the given fair value (Basheer & Hajmeer, 2000; Abdalla, Zakaria, Sulaiman & Ahmad, 2010).  

 

( = 12B!9;def;g − 9,$�<
,E�    (7) 

 
where, D' is the number of output units. Activation functions frequently used in the literature include hyperbolic 
tangent sigmoid, logarithmic sigmoid and linear activation functions (Haykin, 1999) (see Tab. 3). 
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Tab. 3.  Some activation functions commonly used in artificial neural network applications
Function Name 

Hyperbolic tangent sigmoid 
function 

Logarithmic sigmoid function 

Linear function 

 

 
In this study,  the new geodetic network ha

The coordinates of points on a network 
the ED50 and ITRF96 coordinate system
coordinates in both systems were divided into two groups. Of these, 47 geodetic points
distributed over the study area, used as reference points, whil
points to be used for performance analysis (Fig. 2). 

Performance reliability was assessed by the differences (Eq.
and actual coordinate values of the results ob
Estimation methods, and ANNs. ∆�,�� !�

Root mean square error values (Eq.
measurements). 

ijk(

A Study on 2D similarity transformation using multilayer perceptron neural netw
on with conventional and  robust outlier detection  methods 

activation functions commonly used in artificial neural network applications
Function Type  Mathematical Expression 

 

 
 

 l!m$ � Yf � Y%fYf � Y%f function range from 

 

 
 

l!m$ � 11 � Y%nf 
function range from 0 to 1.

 

 
 

l!m$ � �m the
function range from 

 

3. Materials and Methodology 

In this study,  the new geodetic network has been created to examine the above
coordinates of points on a network created for this purpose were obtained using the RTK

ITRF96 coordinate systems. In the created geodetic network, geodetic points with known 
coordinates in both systems were divided into two groups. Of these, 47 geodetic points

used as reference points, while remaining 12 geodetic points were used as control 
points to be used for performance analysis (Fig. 2).  

Performance reliability was assessed by the differences (Eq. 8) between known values of the coordinates 
and actual coordinate values of the results obtained from the transformations performed using 

!�, 
$^�3o� � !�, 
$d;gdfg;epq 
Root mean square error values (Eq. 9) were calculated for the statistical analysis 

ijk( � r1 DBs∆�,�t1�
,E�u  

Fig. 2.  Distribution of geodetic points. 

A Study on 2D similarity transformation using multilayer perceptron neural networks and 

activation functions commonly used in artificial neural network applications. 
Explanation 

The output values of 
the hyperbolic tangent 

function range from -1 to 1. 

The output values of 
the logarithmic sigmoid 

function range from 0 to 1. 

With α a fixed number, 
the output values of linear 

function range from -1 to 1. 

above-described methods. 
obtained using the RTK-GPS method in 

. In the created geodetic network, geodetic points with known 
coordinates in both systems were divided into two groups. Of these, 47 geodetic points,which were evenly 

e remaining 12 geodetic points were used as control 

8) between known values of the coordinates 
tained from the transformations performed using t-test, M- 

  (8) 
statistical analysis (D: The number of 

  (9) 
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The two-dimensional similarity transformation of the coordinates common in two coordinate systems was 
performed using LSE. Outliers in the measurement group were detected iteratively using t-test and removed 
from geodetic network. During detection of outliers, when a0 = 0.05 was selected as the significance level, 
outliers were detected at the end of 8 iterations and 12 measurements were removed from the measurement 
group. When a0 = 0.01 was selected as the  significance level, outliers were detected as a result of 4 iterations 
and 6 measurements were removed from the measurement group. Selecting 0.01 as the  significance level 
detected 6 measurements as not outlier, as compared to selecting 0.05 as the  significance level (Tab. 4).  
 

Tab. 4.  Analysis of outliers using conventional solution methods. 

Number of Iterations 
Significance Level=0.05 Significance Level=0.01 

Max Test  Statistic Critical Value 
Point ID 
(Outlier) 

Max Test  Statistic Critical Value 
Point ID 
(Outlier) 

I.  7.561572 1.661961 7,21  7.561572 2.368497 7,21  
II.  5.275576 1.662765 18,19,20 5.275576 2.370493 18,19,20 
III.  7.505862 1.664124 6 7.505862 2.373868 6 
IV.  1.847396 1.664625 13,29,41 1.847396 2.375111 - 
V.  1.903764 1.666294 15 - - - 
VI.  1.708086 1.666914 23 - - - 
VII.  1.750083 1.667572 8 - - - 
VIII.  1.608736 1.668271 - - - - 

 
Efforts were made to iteratively detecting outliers in the measurement group using robust estimation 

methods. Andrews, Beaton-Tukey and Danish M-Estimations were used as estimation methods. The results 
show that all three robust methods iteratively detected point 7 and point 21 as outliers, whereas Beaton-Tukey 
and Denmark M-Estimations established that the weight of point 6 has changed but detected it as suspicious, 
rather than an outlier (Tab. 5).  

 
Tab. 5.  Outliers analysis by robust estimation methods. 

Robust Estimations 
Point ID Vi Andrew Wi Beaton-Tukey Wi Danish Wi Result 

7 5.650927 0.157 0.021 0.000 Outlier 
21 8.395877 0.111 0.003 0.000 Outlier 
6 1.078722 0.916 0.503 0.312 Suspicious 

 
There are different training algorithms in the literature. In this article, two high-performance training 

algorithms that improve performance were studied using different optimization techniques. These algorithms 
were Levenberg-Marquardt and Bayesian regulation algorithms. Levenberg-Marquardt algorithm is based on 
the maximum neighborly least squares calculation method. Gauss-Newton and gradient descent algorithms 
containing Levenberg-Marquardt algorithm in the best properties not affected by the slow convergence problem. 
Also, it is faster than other methods in terms of processing time (Hagan & Menhaj, 1994). Bayesian regulation 
algorithm derived from the Levenberg-Marquardt algorithm, the Bayesian regulation algorithm updates weight 
and bias values. This method minimizes the combination of square error and weight. Also, it determines 
the correct combination to produce network (Mackay, 1992). 

In MLPNNs, back-propagation algorithm was employed, with ED50 coordinate system in input layer as 
datum and ITRF96 coordinate system in the output layer. In an application network of three layers, various 
activation functions and training algorithms were utilized. Eight different network configurations were created 
by activation functions and training algorithms (Tab. 6). Concerning training parameters, MATLAB software 
was used, and learning rate was accepted as 0.1 and momentum coefficient as 0.9, and an error of 0.00001 was 
accepted during the training phase of the network. As a result of the trial-and-errors made in all network 
configurations, it was decided to create a network architecture with 2 neurons in the input layer, 8 neurons in 
the hidden layer and 2 neurons in the output layer [2:8:2]. 

 
Tab. 6.  Network configurations created for training. 

Network Configuration Training Algorithm I. Function II. Function 
I. Levenberg-Marquardt tansig purelin 
II. Bayesian Regulation tansig purelin 
III. Levenberg-Marquardt logsig purelin 
IV. Bayesian Regulation logsig purelin 
V. Levenberg-Marquardt tansig logsig 
VI. Bayesian Regulation tansig logsig 
VII. Levenberg-Marquardt logsig tansig 
VIII. Bayesian Regulation logsig tansig 

 
RMSE values (Fig. 3) were calculated using the differences between the coordinate values (Tab. 7, 8) 

obtained as a result of the transformation and the calculated coordinate values of control points. 
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Tab. 7.  Differences between the coordinate values obtained as a result of the transformation and the known � coordinate values of control 
points (meters). 

X∆  
Point ID 

48 49 50 51 52 53 54 55 56 57 58 59 

2D Similarity 
Transformation 

(t) 
0.012 0.011 0.015 0.014 -0.020 0.014 0.023 0.013 -0.033 0.017 0.013 0.010 

2D Similarity 
Transformation 

(Andrew) 
0.008 0.005 0.016 0.022 -0.015 0.011 0.021 0.011 -0.028 0.018 0.016 0.009 

2D Similarity 
Transformation 
(Beaton-Tukey) 

0.008 0.005 0.016 0.022 -0.015 0.011 0.021 0.011 -0.028 0.018 0.016 0.009 

2D Similarity 
Transformation 

(Danish) 
0.008 0.005 0.016 0.022 -0.015 0.011 0.021 0.011 -0.028 0.018 0.016 0.009 

I. -0.004 0.019 -0.006 0.015 -0.015 -0.012 -0.011 0.006 -0.006 0.020 0.021 0.000 

II. 0.008 0.015 0.011 0.018 0.015 0.017 -0.015 0.010 0.009 0.014 0.010 0.009 

III. 0.011 0.005 0.027 0.021 -0.026 0.018 0.017 0.011 0.015 -0.029 0.018 0.003 

IV. -0.006 0.023 0.017 0.019 -0.019 0.015 -0.009 -0.007 -0.011 0.019 0.007 0.010 

V. 0.001 0.013 -0.001 0.019 -0.022 0.031 -0.020 0.006 -0.016 0.028 0.007 -0.008 

VI. 0.022 0.007 0.021 -0.009 -0.013 0.016 -0.009 0.013 -0.010 0.014 0.008 0.014 

VII. -0.034 -0.030 0.026 -0.033 -0.024 0.030 0.044 0.058 -0.021 0.032 -0.029 0.025 

VIII. 0.036 0.015 0.012 0.023 -0.032 0.048 -0.022 0.022 0.034 0.024 0.018 0.024 

 
Tab. 8.  Differences between the coordinate values obtained as a result of the transformation and the known 
 coordinate values of control 

points (meters). 

Y∆  
Point ID 

48 49 50 51 52 53 54 55 56 57 58 59 

2D Similarity 
Transformation  

(t) 
0.010 0.013 0.009 0.011 -0.015 0.019 0.011 0.013 -0.017 0.024 0.016 0.013 

2D Similarity 
Transformation 

(Andrew) 
-0.002 0.008 0.005 0.013 -0.017 0.014 0.009 0.005 -0.023 0.024 0.012 0.009 

2D Similarity 
Transformation 
(Beaton-Tukey) 

-0.002 0.008 0.005 0.013 -0.017 0.014 0.009 0.005 -0.023 0.024 0.012 0.009 

2D Similarity 
Transformation 

(Danish) 
-0.002 0.008 0.005 0.013 -0.017 0.014 0.009 0.005 -0.023 0.024 0.012 0.009 

I. 0.013 0.014 0.012 0.015 -0.018 -0.010 -0.019 0.012 -0.011 0.014 0.015 0.010 

II. -0.004 0.019 -0.006 0.015 -0.015 -0.012 -0.011 0.006 -0.006 0.013 0.021 0.007 

III. 0.012 0.013 0.004 0.019 0.031 0.023 0.013 0.006 -0.014 0.017 0.026 0.007 

IV. 0.014 0.001 0.018 0.022 -0.016 0.023 0.008 0.010 -0.015 0.013 0.018 0.022 

V. 0.020 0.005 0.022 0.026 -0.038 0.022 0.009 0.022 -0.030 0.022 -0.005 0.016 

VI. 0.002 0.017 0.008 0.012 -0.024 0.015 -0.005 0.017 -0.004 0.017 0.016 0.018 

VII. 0.009 -0.037 -0.012 -0.025 -0.028 0.033 -0.036 0.021 0.006 0.027 0.032 -0.025 

VIII. 0.037 0.019 0.016 0.023 -0.023 0.030 -0.015 0.021 0.034 0.045 0.006 0.033 
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Fig. 3.  RMSE values of the coordinate differences of control points (meters). 

 

The RMSE of the coordinate differences revealed that, in both directions !�, 
$, the best result was 
obtained for the network configuration (II) using a combination of 'tansig-purelin' activation functions and 
Bayesian regulation algorithm. The worst result was obtained for the network configuration (VII) using 
a combination of 'logsig-tansig' activation functions and Levenberg-Marquardt algorithm (Fig. 3). 

 
4. Conclusion 

 
Coordinate transformation is a necessity when there is a need for the collocation of different geological 

maps with different coordinate systems. Different transformation methods can be used depending on the shape of 
the calculation surface, purpose of transformation and the number of common points in both systems. This study 
use two-dimensional coordinate transformation method was used. In two-dimensional coordinate transformation 
applications, outliers are detected by a conventional outlier detection test procedures based on LSE due to its 
advantages. Disadvantages of LSE, including the effect of propagation and iterative removal of measurements 
from the measurement group have led to the search for other statistical methods. Alternatively, M-estimation 
methods are usedfor outlier detection. In this study, the applicability of ANN models was tested by creating 
network configurations using various training algorithms and activation functions, in addition to the methods 
mentioned.  

A study area with 59 geodetic points with known coordinates in ED50 and ITRF96 coordinate systems were 
employed for the study. Of these points, 47 were selected as reference points, and remaining 12 as control points 
were used in performance analysis. In this context, according to two-dimensional similarity transformation, 
RMSE values obtained for !�, 
$ using t-test, a method for detection of outliers, were ±0.017 m., ±0.015 m, 
respectively, whereas those obtained using robust estimation, which localizes and even eliminates disruptive 
effects of outliers, were ± 0016 m and  ± 0.013 m, respectively. According to the transformation conducted using 
ANNs, the best result was obtained for the network configuration (II) using a combination of 'tansig-purelin' 
activation functions and Bayesian regulation algorithm, compared to other network configurations and two-
dimensional similarity transformation methods. The results are valid for the data sets used in the study so 
generalizations cannot be made.   

The advantages of the ANNs model used in the study: 1) No need for any mathematical model, 2) Ability to 
immediately reveal the relationship based on the sample data presented to ANNs, 3) Ability to be trained 
iteratively with the required sensitivity to produce solutions suitable for the system. The disadvantages of 
the ANN model: 1) That the network structure applicable to the problem is made by trial-and-error method, 2) 
Lack of a rule for determining learning coefficient and the number of layers, which are parameters of 
the network.  

In conclusion, the ANNs were able to demonstrate the relationship between two systems according to 
the two-dimensional similarity transformation method. Therefore, in addition to geodetic coordinate 
transformation methods, utilization of an ANN can be recommended to researchers for further similar studies. 
Moreover, in further studies, the subject can be addressed in different coordinate transformation models and 
coordinate data with a wider distribution.  
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