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A Study on 2D similarity transformation using multilayer perceptron
neural networks and a performance comparison with gnventional
and robust outlier detection methods

Berkant Konakglu® and Ertan Gokalg

One of such transformation methods, the two-dinogsisimilarity transformation, is widely used ieagletic studies. The outliers in
the measure group should be detected so that théelmestablished during the transformation processesg accurate results. In
transformation practices, conventional outlier deten test procedures based on the least squatasa®n (LSE) and robust estimation
methods are widely used for the detection of astli€he aim of this study was to compare perforraaraf the result data obtained by
multilayer perceptron artificial neural networks (®NNs) including various activation functions amdining algorithms of atrtificial
neural networks (ANNSs), which has recently beguibeawidely used in scientific studies and engimegfields, and of the result data
obtained using various methods to detect outliarsnio-dimensional similarity transformation procdsstween two different coordinate
systems. In ANNs consisting of three layers, agfdrent network configurations were generatechgsiifferent activation functions and
training algorithms. The coordinates of the contpolints calculated by two-dimensional similaritydaANNs methods were compared with
known coordinate values. Differences between thmdamates calculated using two-dimensional simtlartransformation and eight
different network configurations and the coordirsaté control points were examined in terms of that mean square error, and network
configuration which uses a combination of 'tansigghin' activation functions and Bayesian regulatialgorithm provided the best result.
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1. Introduction

In addition to exploration of metallic mines, intlisl raw materials, natural gas, coal, oil and engdound
water, maps produced at various scales serve aasia for various engineering projects such as saiby
highways, subway, dams and tunnels. It is necegsaproduce geological maps responding to the nézds
monitor the geological features and undergroundurees of a country. Coordinate systems are impbfta
maps to gain numerical meaning. Transformation eetwcoordinate systems is a necessity for the iasisoc
of geological maps produced in local or nationabrdinate systems (such as NAD27 and ED50) and bloba
coordinate systems (such as ITRF-yy and WGS84)ec8eh of the transformation method depends on
the purpose of transformation and the number ofncommon points in both systems (Ghilani & WoB0B).

In two-dimensional systems, mostly similarity, a&i and projective transformation methods are used a
the transformation method. In geodetic studiesessive measurements are made to increase the @cafra
the measurements. The relationship between a laugeber of measurements is established by adjustmen
theory. Precise values and sensitivity of the mesmants are calculated by least squares estim@t®E). In
addition to gross and systematic errors in the oreasent group, there can also be unidentifiablesomesnent
errors in the measurement group. Measurementsinorgasuch measurement errors in the measuremenpgr
are called outliers. Detection of outliers is uguglerformed by conventional outlier detection tpebcedures
based on LSE. Disadvantages of conventional outletection test procedures led to the search foerot
methods. In literature, there are many studiesamventional outlier detection test procedures (Beah, 1995;
Kok, 1984; Pope, 1976; Schwarz & Kok, 1993; KnightWang, 2009). An alternative method for detecting
outliers in the measurement group is robust esiimgHampel, Ronchetti, Rousseeuw & Stahel, 198ahé,
1981; Jureckova & Sen, 1996). Artificial neural wetks (ANNs) have recently begun to be widely used
scientific studies and engineering fields. ANNsdego be employed in Geodesy, and it is possibketthem

in various studies (Schuh, Ulrich, Egger, MullerS&hwegmann, 2002; Zaletnyik, 2004; Kavzoglu & Saka,
2005; Lin, 2007; Tierra, Dalazoana & De Freita®)&0Gullu & Yilmaz, 2010; Turgut, 2010).

The aim of this study was to compare performandethe result data obtained by multilayer perceptron
artificial neural networks (MLPNNS) including vatis activation functions and training algorithmsgd aof
the result data obtained using various methodsetect outliers in two-dimensional similarity traoshation
process between two different coordinate systemshé two-dimensional similarity transformatiortest, one
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of conventional outlier tests, and Andrews, Bealokey and Danish M-Estimations, which are robust
estimation methods, were employed to carry outsftamation process. In ANN application, tanjantrsaid
(tansig), logarithmic-sigmoid (logsig) and linegu(elin) were used as activation functions, whitvénberg-
Marquardt and Bayesian regulation were used asitigaialgorithms. The resulting values were analyired
terms of the root mean square error (RMSE) of twdinate differences.

2. Methods

2.1. Two-Dimensional Similarity Transformation

The relationship between two coordinate systemsbmaexpressed geometrically with the aid of points
known as common to both systems. Two-dimensiomallaiity transformation has a total of 4 parameters
including 1 scale, 1 rotation, and 2 translatioriserefore, the relationship between the two coatdirsystems
requires minimum 2 points known in both systems. (Bg The two-dimensional similarity transformatiemn
applied to two-dimensional coordinates betweendaardinate systems by;

X=ax—-by+c
Y=ay+bx+d ()

where,x, y is the first coordinate systerl, Y is the second coordinate systamp, ¢ andd coefficients are
transformation parameters.

If the number of common points in both systems ighhtransformation parameters are calculated by
the method of LSE. The matrix representation cawtiigen as (Eq. 2);

x;, -y; 1 0 X, [Vxi]
’Vyl xl 0 1 a Yl | VY1 |
A=1" X=?L= ' V=|:| 2)
lxn ~Vn 10 d Xn | VXn |
v, x, 0 1 lv,] v, |

n

where, X is the vector of the unknown parameters and utatied by the equatiok = (ATPA) *ATPL, A is
the coefficients matrixp is the weight matrixy is the vector of residuals atids the translation vector.

2.2. Conventional Outlier Detection Methods

In geodetic studies, outliers are usually detetig@ conventional outlier detection test procedirased
on LSE. Reasons to prefer this method include sngallculation algorithm, no need to know the diaté
distribution of observations, and stability of matiatical and functional models throughout the datan.
Outliers are detected iteratively and removed fréhe measurement group, which means ignoring
the information contained in the measurement. Duehe propagation effect of LSE, an error in any of
the measurements can also be reflected in thetadjos of other measurements. In order to test vendttere is
any outlier in the measurement group as a resuialancing calculation;

He = E{VL} # 0 (3)

zero and differ from zero as the alternative hypsihis established for gross error (Eq. 3). Hypsis testing is
performed using adjustment values introduced to rieasurements. A test value is calculated for each
adjustment value. This value is compared with thrét lvalue determined according to the degree eédiom
from the table which the distribution of the me&snents matches. Any measurement with a test vahgenr
than the limit value is considered an outlier aechoved from the measurement group. This procesinces
iteratively until there is no outlier in the measunent group. Three different approaches are usednwventional
solution methods: Data-Snooping (DS), Tau andudgst) tests (Gokalp, Glingdr & Boz, 2008).

If the a priori variance is not known or a valueat be assigned to it before adjustment, the aripri
variancem,? is calculated after adjustmer,? is the a posteriori variance calculated from thsiduals free
from the model errors.
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Tab. 1. Test statistic, test distribution andicat value.
Test Test Statistic Test Distribution Critical Value
Sov/ (P QuyP)y; ' (-ao/®
Pw)
%(P—m ~Tf.(1-ao/2) Tf.(1-a0/2)

PW)

— ~t t
— f—1,(1-a0/2) f—1,(1-a0/2)
Mg/ (PQuyP)j; ° °

Data-Snooping

Tau

In Table 1,P is the weight matrixy; is the residuals vectos, is the a priori standard deviation of unit
weight, f is the degree of freedor®@yy is the cofactor matrix of the residuadg, is the significance leveN
represents normal distributionrepresents tau test ahcepresents student test. The significance levesiglly
chosen as 5 % (Ghilani & Wolf, 2006; Biacs, Krakiyws Lapucha, 1990).

2.3. Robust Estimation Methods

LSE is mostly criticized due to its sensitivity toeasurements with a gross error. In this case,stobu
estimation methods capable of detecting outliethénmeasurement group in a more effective waypseterred.
Robust estimator functions can be typically clasdifis M-, R- and L-Estimators used in statistaoalyses. As
M-Estimators, there are many methods in the liteeatNormal distribution of geodetic methods faatks
widespread use of M-Estimators, which require theviledge of premise distributions (Ince, Konak &slan,
2008).

In robust estimation, rather than the score fundtibPV = min used in the LSE, anotheV/)which is less
affected by the errors of corrections is selectedha score function. A solution that makes thectetl score
function minimum is sought. Solution process ifqaned as in equation (Eq. 4).

> W) = min )

The condition in which the score function is minimis obtained by taking the derivative with respgedt
values in the equation. The solution of resultingn4tinear equation is iterative. In robust estimati
w(V;) = dp(V;)/dV; influence function is obtained by taking the dative of the score functiop(V;) with
respect to corrections. Weight functiéti(V) = ¥(V)/V is obtained by dividing the influence function by
corrections. The estimation process is performed aguation (Eq. 5);

Xi = (ATVT/,:A)_:L ATWiL
V=A% — L (5)
W,=PW,_,, i=12 ..n

where,W; is the equivalent weight matriR, is the first weight matrix of the measuremefitsjs the robust
weight factor,n is the number of measurements drid the iteration number. The weight matfixin the first
iteration can either be a unit matrix or estimag@mise weight matrix. The iterations continue lunti
the difference betweeX,,,and X; are negligible. As a result of the iterations, ieglent weights of outliers
become smaller, or even reduced to zero. This miahdhe negative effect of the outliers in theameement
group of the unknowns decreases (GoOkalp et al.820Dhe reliability of the results obtained frombust
estimations depends on accurate selection as msigossible of the critical value with which the remtion
values of the measurements are compared (Taln Belliterature search, it was found that thetlipairameter
valuec is not a fixed number, and it was concluded thatlimit value is selected based on experiences.

Tab. 2. The weight function of the M-Estimations.

M-Estimation Weight Function Critical Value
Vi (Vi)71 V| < cm
- )sin—(— il =
Andrews w; { CO c Wi > cr
2
V; 2]
g -3 Vil < c
Beaton-Tukey w; {[ OC Wil > c
Vﬁ)
: o exp(—— Vil > ¢
Danish w; { : c? Wi <ec
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2.4. Artificial Neural Networks

Artificial neural networks can be defined as congpytrograms that mimic the human brain, which has
the ability to process even non-linear informatidmm high-performance. In addition, ANNs can besatered as
a parallel information processing system in a selmseontrast to the complexity of the human brémey have
a much simpler structure. Nerve cells are groupémllayers, creating ANNSs.

Multilayer perceptron neural networks (MLPNNs) ate most commonly used feed-forward neural
networks. A MLPNN consists of three types of lay¢he input layer, one or more hidden layers amdaitput
layer, as shown in Fig.1. The input layer is thgetawhere data is presented to the network. Thebeuarof
neurons in this layer equals to the number of irgata. In this layer, the data obtained from oetside not
processed; the layer is only obliged to write tlaadand communicate it to the hidden layer. Hididger is
the layer where the data from the input layer scpssed. In some networks, the number of hiddesrdagnd
the number of neurons in the hidden layer may chadgpending on the problem. Output layer is thal fiayer
of the network. It provides output by processing dtlata received from the hidden layer with the fiemcused.
The number of neurons equals the number of datsepted in input layer at the output. It is the tateat
generates the result value using the data frorhittden layer (Hornik, Stinchcombe & White, 1989).

Weights are the parameters indicating the impogaamud effect in the cell of data entering the nekwo
Each input data has a weight of its own. Henceh éagut data ismultiplied by its own weight; theoguct is
added to error value and sent to the activationtfan in order to calculate the output value (Eq. 6

N, = Z Wkxkt + w, (6)

where, x; is the input neurorWi’]‘- is the weight coefficient of each input neurdt, is the biasj is the unit
number of(k — 1)" layer andj is the unit number o¢" layer.

The back-propagation (BP) algorithm reduces thersrfrom output to input, which is why it is called
“back-propagation algorithm”. It is an easy to ursi@nd and preferred learning algorithm. The atbariis
used to recalculate the weights in each layer aaogrto the existing level of error in the netwarltput. BP
algorithm is generally used for multilayer netwqrkather than single layer networks (Fig. 1).

Hidden
Layer
Inputs Outputs
Input Output
Layer Layer

Fig.1. A typical example of a multilayer neuratwerk.

The relationship between input data and output dataased on training the network and determining
the optimum values of the weight values of the wekwTraining algorithms calculate the weights vihigill
minimize differences between output values produmethe networkV; and the actual valué$, .,.;. The error
of the network is calculated by Eq. 7 and then Wesignd bias are updated iteratively until the reaggproaches
the given fair value (Basheer & Hajmeer, 2000; Alad&akaria, Sulaiman & Ahmad, 2010).

1o
E= EZ(Nactual - Ni) (7)
i=1

where,n, is the number of output units. Activation functioinequently used in the literature include hypédo
tangent sigmoid, logarithmic sigmoid and lineaiaatton functions (Haykin, 1999) (see Tab. 3).
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Tab. 3. Somactivation functions commonly used in artificialing network applicatior.
Function Name Function Type Mathematical Expression Explanation

Hyperbolic tangent sigmoid The output values of

. _et—e™ the hyperbolic tangent
TG fw) = el 4 ot function range fron-1 to 1.
The output values of
Logarithmic sigmoid function fw) = TTo7 the logarithmic sigmoid
e~ u

function range from 0 to

With « a fixed number,
fw) =au the output values of linear
function range fron-1 to 1.

Linear function

3. Materials and Methodology

In this study, the new geodetic networks been created to examine thbovedescribed methods.
Thecoordinates of points on a netwccreated for this purpose weobtained using the RT-GPS method in
the ED50 andITRF96 coordinate systes. In the created geodetic network, geodetic poimith known
coordinates in both systems were divided into twougs. Of these, 47 geodetic po,which were evenly
distributed over the study arassed as reference points, ve remaining 12 geodetic points were used as cc
points to be used for performance analysis (Fig

Performance reliability was assessed by the diffege (Ec 8) between known values of the coordine
and actual coordinate values of the resulttained from the transformations performed ust-test, M-
Estimation methods, and ANNSs.

AX,Y= (X, Y)known - (X' Y)calculated (8)

Root mean square error values (9) were calculated for thetatistical analysis(n: The number of

measurements).
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Fig. 2. Distribution of geodetic points.
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The two-dimensional similarity transformation o&thoordinates common in two coordinate systems was
performed using LSE. Outliers in the measuremeatigrwere detected iteratively using t-test and nexdo
from geodetic network. During detection of outlievghenay = 0.05 was selected as the significance level,
outliers were detected at the end of 8 iteratiom$ 32 measurements were removed from the measuremen
group. Whergy = 0.01 was selected as the significance leveljepsitwere detected as a result of 4 iterations
and 6 measurements were removed from the measuregraup. Selecting 0.01 as the significance level
detected 6 measurements as not outlier, as compmasediecting 0.05 as the significance level (Hb.

Tab. 4. Analysis of outliers using conventiondlison methods.

Significance Level=0.05 Significance Level=0.01
AR @ [ Max Test Statistic | Critical Value Pomt_ e Max Test Statistic | Critical Value Pomt_ o
(Outlier) (Qutlier)
I 7.561572 1.661961 7,21 7.561572 2.368497 7,21
1. 5.275576 1.662765 18,19,2( 5.275576 2.370493 8,19,20
111, 7.505862 1.664124 6 7.505862 2.373868 6
V. 1.847396 1.664625 13,29,41 1.847396 2.375111 -
V. 1.903764 1.666294 15 - - -
VI. 1.708086 1.666914 23 - - -
VII. 1.750083 1.667572 8 - - -
VIII. 1.608736 1.668271 - - - -

Efforts were made to iteratively detecting outliensthe measurement group using robust estimation
methods. Andrews, Beaton-Tukey and Danish M-Estomatwere used as estimation methods. The results
show that all three robust methods iteratively ciete point 7 and point 21 as outliers, whereas @edukey
and Denmark M-Estimations established that the tedd point 6 has changed but detected it as siogEc

rather than an outlier (Tab. 5).

Tab. 5. Outliers analysis by robust estimationhods.

Robust Estimations
Point ID Vi Andrew W Beaton-Tukey W Danish W Result
7 5.650927 0.157 0.021 0.000 Outlier
21 8.395877 0.111 0.003 0.000 Outlier
6 1.078722 0.916 0.503 0.312 Suspicious

There are different training algorithms in the ritire. In this article, two high-performance tram
algorithms that improve performance were studieidguslifferent optimization techniques. These altons
were Levenberg-Marquardt and Bayesian regulatigerdhms. Levenberg-Marquardt algorithm is based on
the maximum neighborly least squares calculatiothote Gauss-Newton and gradient descent algorithms
containing Levenberg-Marquardt algorithm in theth@sperties not affected by the slow convergerrcdlpm.
Also, it is faster than other methods in terms @fcessing time (Hagan & Menhaj, 1994). Bayesiamledpn
algorithm derived from the Levenberg-Marquardt aithon, the Bayesian regulation algorithm updateggive
and bias valuesThis method minimizes the combination of squarereand weight. Also, it determines
the correct combination to produce network (Mack®92).

In MLPNNSs, back-propagation algorithm was employeith ED50 coordinate system in input layer as
datum and ITRF96 coordinate system in the outpygrlain an application network of three layers,ivas
activation functions and training algorithms wetdized. Eight different network configurations veecreated
by activation functions and training algorithms KT#&). Concerning training parameters, MATLAB scite/
was used, and learning rate was accepted as 0.thame:ntum coefficient as 0.9, and an error of 00Q0@as
accepted during the training phase of the netwéik.a result of the trial-and-errors made in allwaak
configurations, it was decided to create a netwardhitecture with 2 neurons in the input layer,e®inons in

the hidden layer and 2 neurons in the output IE§:&:2].

Tab. 6. Network configurations created for traigin

Network Configuration Training Algorithm I. Function Il. Function
. Levenberg-Marquardt tansig purelin

Il Bayesian Regulation tansig purelin

1. Levenberg-Marquardt logsig purelin

V. Bayesian Regulation logsig purelin

V. Levenberg-Marquardt tansig logsig

VI. Bayesian Regulation tansig logsig

VII. Levenberg-Marquardt logsig tansig

VIII. Bayesian Regulation logsig tansig

RMSE values (Fig. 3) were calculated using theedéfices between the coordinate values (Tab. 7, 8)
obtained as a result of the transformation and#theulated coordinate values of control points.
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Tab. 7. Differences between the coordinate vabl¢sined as a result of the transformation andkhewnX coordinate values of control
points (meters).

Point ID
48 49 50 51 52 53 54 55 56 57 58 59

AX

2D Similarity
Transformation | 0.012 | 0.011| 0.015 0.014 -0.020 0.014 0.0p3  0.013.033| 0.017| 0.013] 0.01d
®
2D Similarity
Transformation | 0.008 | 0.005| 0.016f 0.022 -0.015 0.011 0.0p1 0.011.028| 0.018| 0.016] 0.009
(Andrew)
2D Similarity
Transformation | 0.008 | 0.005| 0.016] 0.022 -0.015 0.011 0.0p1 0.011.028| 0.018| 0.016] 0.009
(Beaton-Tukey)

2D Similarity
Transformation | 0.008 | 0.005| 0.016] 0.022 -0.015 0.011 0.0p1 0.011.028| 0.018| 0.016] 0.009
(Danish)

l. -0.004 | 0.019| -0.004 0.01% -0.015 -0.012 -0.011 ®.00-0.006| 0.020{ 0.021 0.00

Il. 0.008 | 0.015| 0.011] 0.01¢ 0.015 0.017 -0.015 0.010009. 0.014| 0.010f 0.009

Il 0.011 | 0.005| 0.027, 0.0214 -0.026 0.018 0.017 0.01101%0., -0.029| 0.018| 0.003

\2 -0.006 | 0.023| 0.017, 0.019 -0.019 0.015 -0.g09 -0.00D.011| 0.019| 0.007, 0.01
V. 0.001 | 0.013| -0.00] 0.019 -0.022 0.031 -0.020 0.00®.016| 0.028| 0.007| -0.008

VI. 0.022 | 0.007| 0.021) -0.009 -0.013 0.016 -0.009 0.01®.010| 0.014| 0.008 0.014

VII. -0.034 | -0.030f 0.026/ -0.038 -0.024 0.030 0.044 0.058€.021| 0.032| -0.029 0.02%
VIII. 0.036 | 0.015| 0.012] 0.023 -0.032 0.048 -0.022 0.022.0340| 0.024| 0.018| 0.024

Tab. 8. Differences between the coordinate vabi¢sined as a result of the transformation andkhewnY coordinate values of control
points (meters).

Point ID
AY
48 49 50 51 52 53 54 55 56 57 58 59
2D Similarity
Transformation 0.010 | 0.013| 0.009] 0.011 -0.015 0.019 0.01 0.p13.0170| 0.024| 0.016| 0.013
(®)
2D Similarity
Transformation | -0.002 | 0.008| 0.005 0.013 -0.017 0.014 0.009 0.0089.023 | 0.024| 0.012| 0.004
(Andrew)
2D Similarity

Transformation -0.002 0.008 0.005 0.013 -0.017 0.014 0.0p9 0.009.023 | 0.024 0.012 0.009
(Beaton-Tukey)

2D Similarity
Transformation | -0.002 | 0.008| 0.005 0.013 -0.047 0.014 0.0p9 0.p0B.023 | 0.024| 0.012] 0.004
(Danish)
l. 0.013 | 0.014| 0.012 0.01% -0.018 -0.010 -0.019 0.p3:P.011| 0.014| 0.015{ 0.01d
II. -0.004 | 0.019| -0.004 0.015 -0.015 -0.012 -0.011 ®.p0-0.006| 0.013] 0.021f 0.007
Il 0.012 | 0.013| 0.004| 0.019 0.031 0.023 0.0413 0.006 0140; 0.017| 0.026| 0.007
V. 0.014 | 0.001| 0.018] 0.022 -0.016 0.023 0.0p8 0.p10.01%0| 0.013| 0.018] 0.027
V. 0.020 | 0.005| 0.022] 0.026 -0.038 0.022 0.009 0.p22.03@0| 0.022| -0.005 0.014
VI. 0.002 | 0.017| 0.008] 0.012 -0.024 0.015 -0.005 0.p1D.004| 0.017| 0.016 0.018
VII. 0.009 | -0.037| -0.012 -0.025 -0.028 0.033 -0.036 D.p20.006 | 0.027| 0.032 -0.02p
VIII. 0.037 | 0.019| 0.016/ 0.023 -0.0233 0.030 -0.015 0.p21.0340| 0.045| 0.006| 0.033

330



Acta Montanistica Slovaca dlume21(2016), numbe#, 324-332
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|I1XR1\-T-5£ 0.017 0.016 0.013 0.013 0.019 0.015 0.017 0.014 0.033 0.027
|I1YR1\-T-5£ 0.015 0.013 0.014 0.012 0.017 0.016 0.022 0.014 0.026 0.027

Fig. 3. RMSE values of the coordinate differerafe=ontrol points (meters).

{t-tzst)

The RMSE of the coordinate differences revealed, tiraboth directions(X,Y), the best result was
obtained for the network configuration (II) usingcambination of 'tansig-purelin' activation funetgo and
Bayesian regulation algorithm. The worst result vaddained for the network configuration (VII) using
a combination of 'logsig-tansig’ activation funaicand Levenberg-Marquardt algorithm (Fig. 3).

4. Conclusion

Coordinate transformation is a necessity when tier need for the collocation of different geotadi
maps with different coordinate systems. Differeahsformation methods can be used depending oshtqee of
the calculation surface, purpose of transformatiod the number of common points in both systems Stdy
use two-dimensional coordinate transformation mgtlvas used. In two-dimensional coordinate transétion
applications, outliers are detected by a conveatioutlier detection test procedures based on L&&E td its
advantages. Disadvantages of LSE, including theceféf propagation and iterative removal of measargs
from the measurement group have led to the searcbther statistical methods. Alternatively, M-esdtion
methods are usedfor outlier detection. In this wtubte applicability of ANN models was tested byating
network configurations using various training alfons and activation functions, in addition to tmethods
mentioned.

A study area with 59 geodetic points with known rctiwates in ED50 and ITRF96 coordinate systems were
employed for the study. Of these points, 47 welecsed as reference points, and remaining 12 asaqroints
were used in performance analysis. In this contagtording to two-dimensional similarity transfotioa,
RMSE values obtained fdiX,Y) using t-test, a method for detection of outlievere +0.017 m., +0.015 m,
respectively, whereas those obtained using robstgihation, which localizes and even eliminates ugisve
effects of outliers, were + 0016 m and + 0.013a@spectively. According to the transformation cartdd using
ANNSs, the best result was obtained for the netwawkfiguration (Il) using a combination of 'tansigrplin’
activation functions and Bayesian regulation akfon, compared to other network configurations amwd-t
dimensional similarity transformation methods. Tiesults are valid for the data sets used in thdysto
generalizations cannot be made.

The advantages of the ANNs model used in the stlidio need for any mathematical model, 2) Abitiy
immediately reveal the relationship based on thepda data presented to ANNs, 3) Ability to be tesin
iteratively with the required sensitivity to produsolutions suitable for the system. The disadmsteof
the ANN model: 1) That the network structure apgihie to the problem is made by trial-and-error roétt2)
Lack of arule for determining learning coefficieahd the number of layers, which are parameters of
the network.

In conclusion, the ANNs were able to demonstrate riflationship between two systems according to
the two-dimensional similarity transformation medhoTherefore, in addition to geodetic coordinate
transformation methods, utilization of an ANN caa tecommended to researchers for further similadiss.
Moreover, in further studies, the subject can béresbed in different coordinate transformation n®ded
coordinate data with a wider distribution.
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