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In recent years, there has been a major development in the field of Unmanned Aerial Vehicles (UAVs) as well as a significant increase 

in the use of aerial photogrammetry, which is an affordable alternative to using LiDAR. However, the nature of the data obtained from 
photogrammetry differs from LiDAR data. Photogrammetry using the Structure from Motion (SfM) method is however computationally 

complicated, and results can be affected by many influences. In this paper, data from two UAVs were compared. The first one is a  

commercial eBee system produced by SenseFly equipped with a Sony Cyber-shot DCS-WX220 camera. The other is a home assembled 
solution consisting of EasyStar II motorised glider and 3DR Pixhawk B autopilot equipped with Nikon Coolpix A camera. The area of spoil 

heap was measured by both systems in the leaf-off period. Both systems were set up identically for data acquisition (overlapping, resolution), 

which made a comparison of the output quality possible. The ground control points (GCPs) were placed in the study area and their position 
determined by GNSS (RTK method).  

A traditional approach for point clouds accuracy validation is their comparison with data of greater accuracy. Unfortunately, the 

photogrammetry is often validated using GNSS points, the position of which is determined under different conditions than GCPs (different 
daytime, number, and visibility of satellites, etc.). The magnitude of photogrammetry errors is theoretically the same as that of GNSS. 

Therefore, in this study, we suggest a novel approach that can be used to compare the accuracy of UAV point clouds without the need for 

additional validation data (for example, GNSS survey). To exemplify this approach, we used data gathered by two UAV systems (eBee and 
Easy Star II). Particularly, we statistically estimated the accuracy of the UAV point clouds; used two approaches to estimate standard 

deviations (one of them using estimated dependencies between data); and investigated the influence of the vegetation cover. 

To determine the systematic and random errors of the UAV systems data, three areas were selected, each with a typical example of 
vegetation on the spoil heap (forest, grass, bush). A comparison of the individual data in a grassy area suggests that the accuracy of the 

differences is about 0.03 m, which corresponds to the actual pixel size. Average shift (systematic error) ranged from 0.01 m to 0.08 m. In the 

forest terrain, the accuracy of data differences is about 0.04 m, which is slightly worse than in the grassy area. Bushy terrain data achieves 
precision values between a grassy area and a forest area. 
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1. Introduction 

 

Mining has a significant impact on the environment. From this point of view, the surface mines are 

particularly problematic with the original arrangement of the landscape completely disturbed and the fertile field 

taken away. Although the regeneration of these areas is usually incorporated into mining plans, the actual effect 

of these activities is still being investigated through scientific research. 

Published studies typically use measurement data to model the current state of the landscape or to analyse 

terrain stability (for example, Close et al., 2016; Stephenne et al. 2014; Zalesky and Capova, 2017). Such data 

represent the basis, the frame, and their quality is conditional for the quality of the study results. Data are 

acquired in a variety of ways, including terrestrial geodetic techniques such as total station and/or GNSS 

measurements (for example, Hogarth et al., 2017; Zalesky et al., 2008). Such common methods are however 

more appropriate for targeting a limited number of individual points rather than to capture a larger natural area at 

the stage of standard bio-chaos. A great benefit of remote sensing over more traditional techniques lies in its 

ability to provide continuous information over a large area. However, references to the use of remotely sensed 

data for monitoring or restoration success assessment of post-mining sites are scarce (Ćmielewski, 2018; 

Cordell, 2017). 

For such purposes, mass data acquisition technologies such as laser 3D scanning, photogrammetry, and 

satellite imagery are preferable to traditional techniques. Laser 3D scanning is especially suitable in its airborne 

variant known as Airborne Laser Scanning (ALS) or LiDAR (Light Detection And Ranging), where multiple 

reflections of a single signal/flight allow a comprehensive analysis of the condition of the vegetation and 

creation of a quality digital terrain model, used for example by (Koska, 2017) or by (Wężyk, 2015) for landscape 

monitoring. 

Recently, extensive research into the use of UAVs carrying a digital camera has been performed. Data 

processing through photogrammetric methods based on Structure from Motion and/or Patch-based Multi-View 
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Stereo is investigated, along with the use of a wide range of carriers and digital cameras from professional and 

costly to very inexpensive and simple. For example in (Pukanská, 2014) photogrammetry was used for mapping 

of a surface quarry and compared with the 3D scanning method, rock outcrops documentation by the UAV 

photogrammetry was studied by (Blišťan, 2016). Low-cost UAVs can also be successfully used for digital terrain 

modelling as shown by (Kršák, 2016). The digital terrain model built in this way can subsequently serve for 

various purposes such as for the monitoring of rock slides (Fraštia, 2014), a case of the monitoring of the Super-

Sauze landslide is described by (Niethammer, 2012). Degradation of the coastal areas is another field of research 

where the UAVs can be successfully used according to (Goncalves, 2015). Roads detection is another of UAV 

applications (Zhou, 2015). Monitoring of the dynamic natural processes with a focus on reproducibility of the 

Earth topography is described in (Claypuyt, 2016). A similar topic focusing on a river channel evolution is 

investigated in (Flener, 2013) combining mobile laser scanning and low-altitude unmanned aerial vehicle 

photography for creating both a bathymetric model and DTM of a meandering Sub-arctic River. The 

disadvantage is the need to take pictures or perform the measurement during the leaf-off period to be able to 

obtain a terrain model as documented in (Hogson, 2005) 

Numerous UAV platforms equipped with various cameras are increasingly available on the market, 

differing in their suitability for mapping of mining areas (Thoeni et al., 2014; Boon, Drijfhout, and Tesfamichael, 

2017; Torresan et al., 2017). Surveyors then often face a question which UAV platform to buy. The ever-

increasing use of UAVs for mining industry makes the knowledge of the precision of resulting point clouds very 

important. Experimental flights over typical areas with various UAVs are often performed before committing to 

the purchase.  

A traditional approach for point clouds accuracy validation is their comparison with data of greater 

accuracy. Unfortunately, the photogrammetry is often validated using GNSS points, the position of which is 

determined under different conditions than GCPs (different daytime, number, and visibility of satellites, etc.). 

The magnitude of photogrammetry errors is theoretically the same as that of GNSS. The point cloud accuracy 

can be greatly affected by the accuracy of the GCP for the GNSS. Due to the size of the image overlays and 

flight height (actual pixel size), the internal accuracy of the photogrammetric model may be higher than the 

accuracy of the GCP determination. Another disadvantage when comparing a point cloud with the GNSS point is 

that the collection of validation data is often limited to hard surfaces and easily accessible places. Another option 

is to compare point cloud with airborne laser scanning data; those are however also affected by a GNSS error. 

Ideal data for comparison would be data identifying both GCPs and validation points in random cloud places, 

determined with significantly higher accuracy than that expected of the model itself. Such validation data can be 

obtained using a total station method that has a significantly higher accuracy than GNSS but is quite a time-

consuming and thus economically demanding. 

Therefore, in this study, we suggest a novel approach that can be used to compare the accuracy of UAV 

point clouds without the need for additional validation data (for example, GNSS survey). To exemplify this 

approach, we used data gathered by two UAV systems – a commercially available eBee and home–assembled 

Easy Star II fixed wing system. Particularly, we (1) statistically estimated the accuracy of the UAV point clouds; 

(2) used two approaches to estimate standard deviations; and (3) investigated the influence of the vegetation 

cover 

 

2. Materials and Methods 

 

2.1 Hornojiřetínská spoil heap 

Spoil heap (Fig. 1) is located in north-west Bohemia, Czech Republic, in the Most mining district (50°34’N, 

13°34’E). The study area of 68 ha is located in the southern part of Hornojiřetínská spoil heap, which has not 

been technically reclaimed. The terrain morphology has, as a result, remained rugged with a typical undulated 

terrain formed by heaping (for example, Doležalová et al., 2012). It has been observed that rough terrain and 

dense vegetation negatively affect the accuracy of point clouds (for example, Meng et al., 2010). Therefore, such 

a challenging environment provides an ideal location for exploring the quality of point clouds and DTMs.  
 

  
 

Fig. 1.  Location of the Hornojiřetínská spoil heap. 
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Before the UAV flights, twenty ground control points (GCPs) were established within and in the vicinity of 

the study area (Fig. 2, yellow dots with blue flags). GCPs were made of white wooden boards (dimensions 

0.40m by 0.40m) with a black circle of 0.15m diameter in the centre. The expected pixel dimension of the circle 

in the image at the intended resolution and flight height was approximately 5 x 5 pixels. GCP coordinates were 

surveyed using a Trimble GeoXR 6000 handheld GNSS receiver with Zephyr 2 external antenna mounted on a 

pole, by the dual-frequency real-time kinematic (RTK) method with a 15 seconds observation time, with a 

connection to the CZEPOS permanent GNSS network. All GCPs were transformed to the Datum of Uniform 

Trigonometric Cadastral Network (S-JTSK; EPSG: 5514) and Baltic Vertical Datum - after adjustment (Bpv; 

EPSG: 5705). Relative precision of GCPs can be estimated at 0.02 m (for example, Štroner et al., 2013).  

 

  
 
Fig. 2.  Location of the study areas (red rectangles - forested area (central part), bushy area (upper left corner) and grassy area (lower left 

corner); GCPs marked as yellow dots with blue flags.  

 

The whole area of the spoil heap consists of distinctly different zones with regard to surface cover, ranging 

from dense forest through low bushes to surface solely covered by grass. Three zones with those three types of 

vegetation were selected as study areas (red rectangles at Fig. 2). 

 

2.2 UAV systems 

Two UAV systems were used for image collection. A commercial system EBee (Fig. 3) produced by the 

SenseFly company is a fixed-wing aircraft with removable wings and a push propeller. It allows an automatic 

flight with a flight time of up to 40 minutes. It is a commercially available mapping and monitoring system for 

data acquisition, equipped with a complete control unit. For the experiment, the aircraft was equipped with a 

SenseFly provided Sony Cyber-shot DSC-WX220 camera (pixel size 1.25 µm) with a resolution of 18.2 MPix 

and a focal length of 4.45 to 44.5mm (was set to 4.45 mm during acquisition, a 35mm equivalent 25mm).  

Home-assembled drone EasyStar II is a commercially available motor glider (Fig. 3), which can be 

combined with a commercially available 3DR Pixhawk autopilot. This autopilot can convert any type of model 

into an autonomous system. The system also features a Nikon Coolpix A (pixel size 1.19 µm) camera with a 

16.2-megapixel resolution and a fixed focal length of 18.5mm (35mm equivalent 28 mm).  

  
 

Fig. 3.  Ebee (left) and Easystar (right). 

 

2.4 UAV surveys 

UAV images were collected during March 2017. One flight with Easystar and two flights with eBee were 

performed to assess the effect of the image quantity on the accuracy and density of a point cloud. The eBee 

flights were mutually perpendicular and differed in flight trajectories (Fig. 4). From now on, we refer to these 

flights as Easystar, eBee
1,
 and eBee

2
. For both systems, a forward overlap of 85 %, sidelap of 65 % and a ground 
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sampling distance of about 30 mm per pixel was set. The height and speed of the UAV flight, as well as the 

shutter speed (1/250 – 1/ 640 for Ebee and 1/1250 for Easystar), were set in both systems by the control 

program. For both systems, the flight height was about 100 m above the ground level. During the Ebee flights, 

the weather was sunny with a temperature of 19 °C, and during the Easystar flight, it was partly sunny with 8 °C. 

For the eBee system, two complete mutually perpendicular flights were performed. The first flight yielded 1004 

images (marked as eBee 1, Fig. 4 left) and the second one 903 images (marked as eBee 2, Fig 4 middle). Only 

one flight (940 images, Fig. 4 right) was performed with the Easystar II glider. 

 

   
 

Fig. 4.  Flight line trajectories (from left eBee1(left), eBee2(middle) and Easystar (right).       

 

 

2.5 Image processing and 3D point cloud generation 

To generate 3D point clouds, acquired images were processed in the Agisoft's PhotoScan Professional 

software, version 1.2.6. Processing was done separately for each individual flight (Easystar, eBee
1
, eBee

2
) as 

well as for the combination of the two eBee flights (eBee
12

) to test the improvement in the terrain representation. 

The process consisted of alignment, iteratively refining external and internal camera orientations and camera 

locations through a least squares method, thus generating a sparse point cloud of tie points, followed by an 

application of a dense multi-view 3D surface reconstruction algorithm. The images, along with a text file 

containing camera positions estimated by the onboard GNSS during the flight, were loaded into PhotoScan 

software. The alignment was subsequently completed using the accuracy parameter set to “high” and pair pre-

selection to “disabled”. Accuracy set to “high” ensured that the original resolution of images was used while the 

“disabled” pair pre-selection ensured the most accurate image matching in all possible combinations. The limit 

for key points (indicating the maximum number of points sampled within each image) was set to 20,000 and for 

tie points (points used for image matching and relative orientation) to 5,000. The GCPs were loaded and 

identified in the images, their a priori accuracy was set to 0.02 m. Six ground control points were completely 

removed from the evaluation due to their physical displacement or complete destruction by animals. This 

devaluation was caused by a time gap between the measurement of the ground control points and the flights, 

which was in turn caused by the necessity to wait for the appropriate weather conditions (no snow cover, low 

wind speed, etc.). Bundle adjustments were computed in the S-JTSK and Bpv datum. Dense point clouds were 

built with a high reconstruction quality and mild depth filtering (set in software Agisoft for optimal results in our 

study area). To determine the accuracy of the photogrammetric model, the total coordinate error (TCE) was 

calculated for each point cloud as follows:  

 

        
     

     
 ,               (1) 

 

where xi  , yi   , zi are coordinate differences of ground control points. 

   

     
   
     

       
 

 
.               (2) 

 

 

The point clouds were exported to the LAS format, and points representing ground surface were identified 

using LAS Ground tool in the ArcGIS software. We calculated point clouds density and height differences 

between point clouds in Cloud Compare 2.9.1. The entire workflow is illustrated in Fig. 5. 

 



 

Acta  Montanistica  Slovaca     Volume 23 (2018),   number 3, 325-336 

                   329 

 
Fig. 5.  The whole procedure diagram. 

 

The total coordinate error of the point clouds in Agisoft Photoscan from eBee achieved worse results than 

Easystar, which was most likely caused by the lower quality of images. These results were published in 

(Moudrý, 2018) and are given in Tab. 1 for a general description of each flight and its processing. 

 
Tab. 1.  Precision overview of flights. 

Flight Total coordinate error [m] 

Easystar 0.041 

eBee1 0.081 

eBee2 0.053 

eBee12 0.050 

 

Residual errors from the Coolpix A camera (Easystar) after calibration in a maximum of 0.2 pixels were 

very small, which is most likely due to the construction and superior quality of the lens. The DSC-WX220 

camera (eBee) achieved a residual error after calibration in a maximum of 0.7 pixels.  

 

2.6 Outliers filtering 

Due to the presumed presence of outliers, we used a robust method (L1 norm). This method (Koch, 1999), 

as a function of the probability distribution, directly uses Laplace distribution that is more suitable for data with 

outlying values than a normal distribution. For nonhomogeneous measurements (measurements with the 

different standard deviation) a robust weight change is given by the function,  

 

wi = 1 / vi.                (3) 

    

Where wi represents weights and vi residuals. The calculation is done iteratively, residuals acquired from 

one calculation are used to calculate robust weights’ changes in the next calculation. The outliers are determined 

by residuals exceeding the limit value (2.5 times the standard deviation calculated from residuals before the 

robust method use). After detection and exclusion of the first set of outliers, a new value of mean and standard 
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deviation is determined, followed by a new robust analysis of outliers. The algorithm of outliers’ filtration is 

shown in Fig. 6. 

 

 
Fig. 6.  Algorithm of outliers’ filtration.       

 

Ten iterations were typically used, and the number of outliers did not exceed 5 % of the dataset. From the 

point clouds representing the bare ground, the following vertical differences were calculated: EasyStar - eBee1, 

Easystar – eBee2, Easystar – eBee12, eBee1 – eBee2, eBee1 – eBee12 and eBee2 – eBee12. These differences 

were used for calculating a mean difference (which is the difference between systematic errors) and the standard 

deviation of the differences (describing the random errors). The RMSE of the differences consists of systematic 

error and random error while the standard deviation contains only the random error component. 

 

                 
           
   

 
              (4) 

 

       
            
   

 
               (5) 

 

                     
          
   

     
              (6) 

 

where xi is the elevation derived from the first point cloud, xREF is the corresponding elevation in the second 

point cloud, and N is the number of differences. Differences were derived using 2.5D Delaunay triangulation 

from ten nearest points in the software Cloud Compare 2.9.1. 

 

2.7 Evaluation of correlated data 

In principle, it is not possible to calculate the absolute precision and accuracy characteristics just from the 

differences. In the presented experiment, the differences and their standard deviations were calculated in all six 

possible combinations (EasyStar - eBee1, Easystar – eBee2, Easystar – eBee12, eBee1 – eBee2, eBee1 – eBee12 

and eBee2 – eBee12).   

The fact that some of the differences were calculated from partly identical data (i.e., eBee12 is 

a combination of images also used for eBee 1 and eBee 2 point cloud, respectively), and are therefore self-

correlated had to be taken into account. An equation describing the relation of the single standard deviations of 

individual point clouds (data “a” and “b”) and the standard deviation of  their difference is: 

 

  
    

      
                  (7) 

 

Where   
  is stthe andard deviation of the first point cloud,   

  of the second point cloud and     
  is a  

standard deviation of their difference. In our case, only the standard deviation of the difference was known. 

However, due to the existence of four point clouds in total, there are six of these equations with four unknowns 

to solve (standard deviations of each point cloud). Due to the possible correlation of the data (differences of 

point clouds) to the calculation, a variance - covariance matrix must be added. Formulas for the calculation of 

surface coordinate points from th eimagery is very complicated and the size of the correlation can therefore be 

only estimated. 
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Mean difference
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Authors have chosen to use the multiple generation of three random files E1, E2, E3 (each containing 1000 

randomly generated numbers). File E4 was created as a sum of E1 and E2 (like Ebee12 = Ebee1 + Ebee2), after 

which the differences L1 – L6 and standard deviations of differences were calculated. 
 

    L1 = E1 - E2; …      

    L2 = E1 - E3; …      

    L3 = E1 - E4; …      

     

    L4 = E2 - E3; …                    (8) 

    L5 = E2 - E4; …      

    

    L6 = E3 - E4; …      

 

The data are only subtracted, each difference L1 … L6 is characterised by the standard deviation  , which is 

the result of the real data subtraction. The dependence of the data thus determined can be characterized by a  

correlation coefficient, which can easily be converted to covariance. If the standard deviation of the individual 

variables is equal to 1, the correlation coefficient is directly the covariance. 

The correlation coefficient   can be easily calculated using a definition formula: 

 

  
   

     
 ,                 (9) 

  

where 
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 .           (10) 

 

The vx and vy are corrections from the mean within individual files L1 … L6 and n is the number of 

differences for each dataset L1 … L6. Due to the relatively small dataset and pseudo-randomness of computer-

generated random numbers (common rand() function), generation and computation were performed 1000x, and 

the mean was used as a result. The resulting correlation matrix M shows considerable dependencies: 
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This correlation and covariance matrix were used for the calculation of the solution of the system of 

equations for the determination of the individual standard deviations. A plan matrix A: 
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The measurement vector l is given by the standard deviations of the differences in the square, and thus: 
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The weight matrix P is acquired according to the formula: 
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                     (14) 

 

The system of equations is then solved by the least squares method easily, as it is in a linear form (unknown 

standard deviations are also solved in square): 
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To show the advantage of our method, we also tested the approach without the use of a weight matrix (no 

correlation calculation). 

 

 

3. Results and discussion 

 

3.1 Comparison of point clouds  

The density of point clouds for the acquired data sets varied significantly (Tab. 2). The densest point cloud 

was achieved with Easystar in all areas.  

 
Tab. 2.  Mean point density of study areas (points per m2). 

Flight Forest Grass Bushy 

Easystar 313 275 309 

eBee1 249 250 266 

eBee2 185 181 196 

eBee12 217 223 239 

 

 

Tab. 3 shows a comparison of data in a height component for a grassy area. The mean difference values 

(systematic shift) are about 0.05 m higher for Easystar data in comparison to all eBee data. Ebee data shows 

similar parameters with very small systematic shift, which corresponds to the size of one pixel in reality. The 

values of the standard deviations for all data combinations show similar values up to 0.03 m. 

Therefore, the quality of the camera does not have a significant effect on the relative accuracy of the model 

but directly affects the systematic shift of the whole model (determination of the points) and the number of 

correctly evaluated points (Tab. 2). 

It is also interesting to note that on the grassy surface, a very small number of outlying points were detected 

in comparison to other surfaces, although the surface is very compact, has a uniform colour and the correlation 

of individual pixels in the picture may not be unambiguous. 

 
Tab. 3.  Grass area. 

Data difference Mean difference [m] RMSE [m] Std. deviation [m] No. of differences No. of outliers 

Easystar - eBee1 0.077 0.082 0.029 496757 2201 (0.44 %) 

Easystar – eBee2 0.046 0.054 0.029 365160 1225 (0.34 %) 

Easystar – eBee12 0.057 0.063 0.026 448186 1428 (0.32 %) 

eBee1 – eBee2 0.029 0.041 0.029 365223 484 (0.13 %) 

eBee12 – eBee1 0.018 0.031 0.024 496508 1079 (0.22 %) 

eBee12 – eBee2 0.010 0.018 0.015 365044 1812 (0.50 %) 

 

 

Fig. 7 shows a significant local distortion of the difference model between EasyStar and eBee 1 data (in the 

middle). On the right side, a comparison of the eBee 12 and eBee 2 is shown, which displays very small 

differences without significant deformation.   
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Fig. 7.  Height differences of grassy area (Ortophotomosaic - left, Easystar vs. eBee1 – middle, eBee12 vs. eBee2 – right). 

 

 

Tab. 4 shows a data comparison for a forested area. Values of mean differences point to a large systematic 

shift between both eBee 1 and 2 data, which reaches about 0.1 m. The values of the standard deviations of all 

data differences show values of about 0.04 m, which is slightly worse than in the grassy area. The number of 

outlying values is much higher, probably due to considerable filtration and generally worse evaluation quality 

due to the vegetation cover of the area. Despite these negative aspects, it is surprising that the coverage of the 

points (shown in Table 2) is not significantly worse than for the remaining surfaces. 

 
Tab. 4.  Forested area. 

Data difference Mean difference [m] RMSE [m] Std. deviation [m] No. of differences No. of outliers 

Easystar - eBee1 0.043 0.062 0.044 541920 9321 (1.72 %) 

Easystar – eBee2 0.062 0.074 0.039 413272 4942 (1.20 %) 

Easystar – eBee12 0.022 0.044 0.039 470317 7347 (1.56 %) 

eBee1 – eBee2 0.103 0.116 0.055 415704 6380 (1.53 %) 

eBee12 – eBee1 0.065 0.078 0.043 545399 12449 (2.28 %) 

eBee12 – eBee2 0.034 0.052 0.039 416149 9462 (2.27 %) 

 

Fig. 8 shows the comparison of Easystar and eBee 12 data (middle), characterised by very small differences 

and clearly visible holes after ground filtration (tree removal). Fig. 8 shows on the right the differences between 

eBee 1 and eBee 2 data; especially in places where trees obscured the ground, large systematic shifts up to 

0.25 m were detected, probably due to the different directions of the flight. 

 

   

 
 

Fig. 8.  Height differences of forested area (Ortophotomosaic – left, Easystar vs. eBee12 – middle, eBee1 vs. eBee2 – right).  

 

Tab. 5 shows a comparison of data for the bushy area. The mean difference values are the smallest of all 

tested areas, which may be due to the proximity of three ground control points. Values of standard deviations are 

between the wooded area and the grassy area as expected. The number of outliers is similar to the forested area.  
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Tab. 5.  Bushy area. 

Data difference Mean difference [m] RMSE [m] Std. deviation [m] No. of differences No. of outliers 

Easystar - eBee1 0.054 0.070 0.043 461261 9582 (2.08 %) 

Easystar – eBee2 0.013 0.037 0.034 339136 6419 (1.89 %) 

Easystar – eBee12 0.037 0.052 0.036 411331 6613 (1.61 %) 

eBee1 – eBee2 0.041 0.052 0.031 340180 5026 (1.48 %) 

eBee12 – eBee1 0.019 0.033 0.027 463081 8635 (1.86 %) 

eBee12 – eBee2 0.021 0.032 0.023 340566 4059 (1.19 %) 

 

Fig. 9 shows in the middle the height differences of Easystar and eBee 1 data, where a greater height 

differences were found (red, yellow colour). Fig. 9 on the left, the height differences between Easystar and eBee 

2 data are depicted, with fewer significant deformations or holes. So eBee 1 seems to be the worst in bushy and 

forest terrain. 

   

 
 

Fig. 9.  Height differences of the bushy area (Ortophotomosaic, Easystar vs. eBee1 – left, Easystar vs. eBee2 – right). 

 

3.2 Evaluation of data correlation  

Results of the correlated data calculation, the estimates of the errors of each dataset are shown in Tab. 6, 

both variants (with and without the use of the weights and covariances) are presented. 

 
 

Tab. 6.  Estimation of the standard deviations from the correlated data. 

Flights 

Forested area [m] Grassy area [m] Bushy area [m] 

No correlation 

used 
Correlation 

No correlation 

used 
Correlation 

No correlation 

used 
Correlation 

Easystar 0.024 0.038 0.023 0.023 0.033 0.037 

eBee 1 0.039 0.041 0.022 0.021 0.026 0.029 

eBee 2 0.034 0.037 0.017 0.009 0.015 0.025 

eBee 12 0.023 0.031 0.008 0.010 0.014 0.018 

 

The standard deviations determined by the adjustment with the use of the covariances are greater than the 

standard deviations determined without correlation usage, which is due to "false" internal compliance of (at 

least) a part of the data – in this case, a substantial part of the data. In addition, besides the increase of the values, 

their order in terms of accuracy changes, which is again caused by the dependencies (covariances). Covariances 

(or correlation coefficients) are estimates of the size dependencies, but their exact calculations are not possible in 

this case; on the other hand, but without the correction on covariances, the values can be considered to be more 

accurate than they really are since the data and its differences are highly dependent on each other. The values of 

standard deviations determined this way are also closer to realistically achievable values.  
 

 

4. Summary 

 

Here, we presented a comparison of data acquired through two UAV systems on a spoil heap in areas with 

various vegetation densities in the leaf-off stage. The first system was eBee (SenseFly), and the other was a  

home-assembled EasyStar II motor glider with 3DR Pixhawk autopilot. Images were processed in the same way 

using the same ground control points for both platforms to make the resulting data comparable in terms of 

random and systematic errors. These errors are, among other things, dependent on the used camera and its lens 
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distortion and internal imaging settings. For example, eBee keeps changing both shutter speed and ISO settings 

for the image capture while the Easystar system allowed the change of the aperture setting only.  

To determine the systematic and random errors of the UAV-acquired data, three areas with typical 

examples of vegetation on the spoil heap were selected (forest, grass, bush). The density of the datasets was also 

determined for each area to compare the SfM efficiency of individual systems in different types of terrain. From 

the comparison of the densities of points in individual regions, it is evident that SfM yielded the best results in 

most cases in the bushy terrain. Interestingly, the density is the same or worse in the grassy area than in the forest 

area, where obscuring of the ground by the tree can be assumed. This phenomenon is probably caused by a  

worse matching of the relatively monochromatic grassy surface. 

A comparison of the individual data on a grassy area suggests that the accuracy of the differences is about 

0.03 m, which corresponds to the actual pixel size at the used flight height. However, individual data may show 

local deformations due to the worse quality of matching of points on the monochromatic surface. Average shift 

(systematic error) ranged from 0.01 m to 0.08 m. In the forested terrain, the accuracy of data differences is about 

0.04 m, which is slightly worse than the in the grassy area. However, a large number of outlying values is 

present in the data, and the average value shows the greatest deviation of up to 0.12 m in the case of the two 

datasets acquired by the same system (eBee). Bushy terrain data achieves precision values between a grassy area 

and a forested area. 

The evaluation of the data using simulated correlation values shows another side of the experiment. It 

indicates that such calculations can be treacherous if not calculated and interpreted well. Although the results 

achieved with and without the use of the simulated correlation data were relatively similar, these results differ in 

absolute values. When using the correlation data, standard deviations are higher, taking in account the inner 

dependence of individual used data. These standard deviations can be considered to be an estimate of the 

standard deviation describing the absolute precision of the data. It should be emphasised that this is only a  

statistical estimate, not the real values. Actual values of standard deviations cannot be determined in this way, a 

component of the mutual systematic error for both compared data will always be missing. 
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