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Hydrology conditions in recent years clearly demonstrate that flood protection is a priority task for Hungarian water management, 

and its importance cannot be questioned. This study examines three flood control embankments and two dams, including their subsoil 
characteristics. The examinations also contain the modelling of slope stability and seepage conditions. The seepage models were created 
with the Groundwater Modeling System 10 SEEP2D module, which uses the finite element method. As a part of the examination of the 
seepage models, we examine the free flows and the embankments' seepage conditions. Changing the modelling parameters also affects 
seepage conditions. Thus we examine the effects of the embankment’s foot width and on the total flowrate and the seepage conditions. Our 
examination also includes a study about the effects of neglecting the subsoil in computations. For the slope stability examinations, both the 
Groundwater Modeling System UTEXAS module and the Soilvision SVSlope module are used, and their results are compared, showing 
significant differences. While the slope stability measurements were done in a dry state, we also examined the effects of pore water pressure 
on the embankments’ stability. Modelling methods are useful and simple methods for the examination of seepage and slope stability of flood 
control embankments and can provide great help to flood protection professionals. 
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Introduction 
 
 Flood protection and drinking water supply are among the most urgent tasks of water management in 

Hungary (Ilyés et al., 2017; Palcsu et al., 2017). According to extreme weather conditions, floods along rivers or 
flash floods mean real risks to the civil society and to nature, not only in Hungary but all over the world 
(Francois et al., 2019). This is the reason why the proper operation of embankments is vital to have successful 
flood control. It is important to know how an embankment is behaving during a flood period. What kind of 
processing exists inside the embankments concerning water level and stability issues? To understand these 
physical processes, simulations methods can be used successfully in flood control processes (Xiaohui, 2017).  
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Fig. 1:  Location of the examined structures, Borsod-Abaúj-Zemplén county. 
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Along the Tisza river in Hungary, the flood protection is mostly executed with the help of embankments. The 
increasing agricultural and settlement land use during the centuries made it necessary to develop a protection line 
covering the whole section of the Tisza river (Vágás, 2007). More precise knowledge of the related hydraulic 
relations of these protection lines is increasingly needed because huge damage can occur if the protection lines 
are destroyed. The purpose of valley dams is to control the even or changing runoff of the watercourse based on 
the needs of the users (Sternberg, 2006). They typically contain a structural element to control water leakage; 
thus, it is essential to be aware of these leakage conditions. In this study, we examined the seepage conditions of 
three flood protection embankments and two valley dams. These structures are situated in the north-east part of 
Hungary, in Borsod-Abaúj-Zemplén county (Figure 1).  This work extends previous studies (Zákányi and Szűcs, 
2010, 2013) by taking subsoil into consideration. The obtained results can be generalized because simulation 
methods are very important in proper embankment design. 

 
Flood protection in Hungary 

 
In the Middle Ages, floods did not have a high damage factor. The environment of the rivers shows its 

natural status: wide floodplains, huge woody areas that decreased the flood water level. The improvement of 
agriculture brought the necessity for river regulation and floodplain draining. At the time of the regulation of the 
Tisza River, safety was secured by the height of the embankments practically by the end of the 19th century. The 
embankment’s prescribed height was regulated to the largest formerly experienced flood with the addition of 
safety height (Nagy, 2014). However, the highest water level of rivers started to increase with the regulation of 
rivers, the development of the infrastructure and the growth of the agricultural lands (Vágási, 2007). Based on 
the era’s protection philosophy, so-called bulbous structured embankments were made with the construction in 
several cycles (Figure 2). Nowadays, the length of the Hungarian flood protection embankments is more than 
4,200 km (Nagy, 2003). 
 

 
Fig. 2:  The increase in the height of the Széchenyi Dam between Tiszadob and Polgár, 1845-1890 (Mihalik, 2000) 

 
Besides the construction of embankments, we have to deal with another problem as well. The 

embankments are often built on unsuitable subsoil that contains permeable layers. The presence of these 
permeable layers increases the probability of the formation of sand boils (Nagy, 2008). The key element of flood 
protection is the stability of the flood protection dam. The failure and ruin of the embankment carry the 
possibility of catastrophe (Kádár and Nagy, 2017). Hungary’s reservoirs, in addition to water supply, also 
provides flood protection because they delay the runoff of harmful excess water. The inland reservoirs are 
mostly bordered by valley dams, whose embankment was built from clay, which, in most cases, we cannot 
consider as an aquiclude. Therefore, the leakage through the dam has to be controlled, and leaking water has to 
be removed out from the embankment. The task of the interception drain is to block the dangerous seepage 
process and to decrease the dangerous pressure conditions in the embankment. Its material is mostly coarse-
grained sand and sandy gravel. The advantage of its use is that it collects the leaking water in the water-side dam 
body and removes it from the dam, thus blocking the wetting of the dam across its whole cross-section. 
Nowadays, another problem for flood protection and drinking water reservoirs is extreme weather conditions. As 
we experienced in 2010, extreme floods formed in the Sajó and Bódva Rivers, and also in the Tisza River in the 
early 2000s (Zeleňákova et al., 2018).  

 
Site description and methodology 

 
In Hungary, the valley of Tisza river is affected by floods mostly. During the 20th century, and after the 

2000s, many floods were formed, and it caused several problems in flood protection, and the stability of the 
embankments. Considering this situation, we decided to deal with this area, especially the upper part of the Tisza 
river. During our investigation, we used the hydrodynamic and slope stability modelling, which is an important 
tool to know the hydraulic behaviour and its effects on slope stability. With the help of this tool, we can 
conclude the most frequent failures (hydraulic failure, seepage failure, piping) near the embankments, and dams 
(Shivakumar et al., 2015). We modelled three flood protection embankments near the Tisza River (near Cigánd, 
Révleányvár, and Halászhomok) and two valley dams (Lázbérc and Rakaca) during our investigation. 
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For the leaking model, the program applied was the SEEP2D module of Groundwater Modeling System 
10.0, and for the examination of slope stability, the module of Groundwater Modeling System 10.0 UTEXAS 
and the module of Soilvision Slope were used. The Groundwater Modeling System (GMS) is a comprehensive 
graphical user environment for performing groundwater simulations. The entire GMS system consists of a 
graphical user interface (the GMS program) and a number of analysis codes (MODFLOW, MT3DMS, SEEP2D, 
etc.) (Aquaveo, 2019). 

All of the programs apply the finite element method as the numerical method. The word ‘numerical’ 
stands, in this case, for approaching a solution (Völgyesi 2008). Numerical solutions approach the real situations 
in a way that they make sections of ongoing procedures in time and place (Kovács, 2004). In the finite element 
method, as opposed to the finite difference method, the given geometry can be precisely covered with arbitrarily 
shaped elements. Thus, the elements orient much better to the real range than when applying a different finite 
mesh (Durbin and Bond 1998; Zákányi and Szűcs, 2010). The orientation of the elements to the original 
geometry helps to make the model accurate and to determine water flowing across the embankment more 
accurately. 

SEEP2D is a two-dimensional steady-state finite element groundwater model, which is widely used in 
such calculations. Both saturated and unsaturated flow is simulated. SEEP2D is designed to be used on profile 
models (XZ models) such as cross-sections of earth dams or embankments. With the help of the SEEP2D 
module, we calculated the total flow rate, which is the flow rate into (out of) the problem domain (Aquaveo, 
2019). 

UTEXAS is a slope stability software package created by Dr Stephen G. Wright of the University of 
Texas at Austin. UTEXAS is used to analyze slope stability using the limit equilibrium method. The user 
provides the geometry and shear strength parameters for the slope in question and UTEXAS4 computes a factor 
of safety against slope failure. The factor of safety for a candidate failure surface is computed as the forces 
driving failure along the surface divided by the shear resistance of the soils along the surface. UTEXAS4 is a 
state-of-the-art slope stability code and has been widely used in industry for many years (Wright, 1999). 

 The hydrodynamical models show "steady state" at the same time because the SEEP2D module cannot 
handle the transient state. In the case of the valley dams, the water level of the reservoir has relatively small-
scale fluctuation. Thus, the "steady-state" is presumed. And in the case of flood protection embankments, we can 
calculate with a permanently high flood level. 

For the slope stability investigation, we used the Slope module of SoilVision software, which also 
calculate with the limit equilibrium method, and it also can calculate with the effect of leaking water.  

 
Material characteristics of valley dams and flood protection embankments 

 
We had to give several parameters during the examination of flood protection embankments and valley 

dams: for the leaking model, the parameters given were horizontal and vertical factors, for the modelling of slope 
stability they were cohesion and internal friction angle. Furthermore, effective porosity was necessary for the 
definition of given parameters. Some of the applied parameters were provided by the regional waterworks 
company, called ÉRV Zrt., while the rest were taken from a previous study (Zákányi and Szűcs, 2013). The 
related data (not publicly available) of the geometry of the examined embankments was provided by ÉRV Zrt. 
and ÉVIZIG (the Water Management Directorate of Northern Hungary). 

During the modelling, not all of the parameters requested by the program were available; unfortunately, 
sampling and lab examinations are possible only with the proper permission, and in the case of embankments 
only allowed in a justified case. For these reasons, we had to find data from another source. We used a 
Hungarian technical guideline (MI 10 269-1982) that contains parameter intervals, from which we chose a value 
to use in the computations.  

In this paper, the construction and material characteristics of embankments are introduced based on the 
embankment of Cigánd. The shape of the embankments clearly shows the bulbous structure. Considering the 
subsoil, we can divide it into a permeable layer and a cover layer. The embankment was built with these two 
characteristic layers, in which a core and a surrounding shell can be found (Figure 3, Tables 1 and 2). The 
geometry of the dyke at the riverside was recorded by the information offered by ÉVIZIG (Zákányi and Szűcs, 
2013). 

 

 
Fig. 3:  Cross-section of the flood embankment around Cigánd 
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Table 1:  Hydraulic conductivity values of the embankment of Cigánd 

 kh (horizontal) [m/d] kv (vertical) [m/d] 
Inner core 0.00864 0.06 

Shell 0.000864 0.000864 
Impermeable foot 0.000432 0.000432 

Cover layer  0.00086 0.00086 
Water-bearing layer 0.43 0.43 

 
Table 2:  Shear strength parameters of the embankment of Cigánd 

 
Unit weight 

[kg/m3] Cohesion [kPa] Friction angle [°] Effective porosity [%] 

Inner core 2100 35 15 35 
Shell 2200 40 15 30 

Impermeable foot 2200 40 15 30 
Cover layer  2200 40 15 30 

Water-bearing 
layer 2000 0 29 40 

 
The conformation of the valley dam will be demonstrated in this paper by the reservoir dam of Lázbérc 

(Figure 4). The two dams investigated here are different in that an impermeable wall was not constructed under 
the Rakaca reservoir dam. The seepage parameters are shown in Tables 3 and 4. For the parameters of shear 
strength for the Lázbérc valley dam, in case of the watertight wall and bedrock, we assumed non-porous, grainy 
rock. When the “hard rock” option is chosen among the types of material, the program does not ask for the 
cohesion, internal friction angle, or effective porosity. The bedrock is limestone, and the impermeable wall is 
concrete; thus, these parameters were not necessary for the program.  

 

 
Fig. 4:  The cross-section of the valley dam of Lázbérc 

  
Table 3:  Hydraulic conductivity values of the valley dam of Lázbérc 

 Dam body Drain Subsoil Watertight wall Base rock 
k  [m/d] 0.00864 8.64 0.043 0.0000864 0.000864 

 
Table 4:  Shear strength parameters of the valley dam of Lázbérc 

 Unit weight[kg/m3] Cohesion [kPa] Friction angle [°] Effective porosity [%] 

Dam body 2000 40 15 30 
Drain 2000 0 30 32 

Subsoil 1800 10 25 25 
Watertight wall 2500    

Base rock 2200    
 

Calculation results of hydrodynamic, and slope stability simulations 
During the modelling, our examination covered leakage models and slope stability problems. The 

hydraulic modelling of the dam and its subsoil can be easily implemented with the help of GMS 10 program, and 
we have the opportunity to carry out a slope stability examination with the consideration of water seepage. After 
the water level and exit surface are provided, the program calculates the rate (the blue and red lines, respectively, 
in Figures 2–7), the rate of the flow velocity inside the dam and the pore water pressure and total flow rate, from 
which diagrams of the calculated rates can be easily made for visualisation. During the determination of the total 
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flow rate, the program calculated the flow rate related to a one-meter-long part of the embankment. For each 
embankment, we took the standard flood level as the basis, which is located one meter downwards from the 
shoulder, while for the valley dams, we took the maximal operational level into consideration. Using the 
SoilVision program Slope package and the GMS UTEXAS module, we examined the slope stability; one of the 
purposes for this was to compare the two programs. With the Slope module, we examined three stages. In one 
case we did dry condition modelling, in the other case we put the rate of pore water pressure calculated by the 
GMS as a discrete point into the Slope module and thus we took the water pressure into consideration. To 
consider the effect of water, we recorded the highest flow line calculated by the GMS in the Slope module and 
set it as water level. We compare the results of the different cases. 

The GMS UTEXAS’ module considers the flow relation and the rate of water pressure calculated by the 
SEEP2D module, and thus calculates the critical slope failure surface with the Spencer method and its belonging 
security factor. All slope stability tests were done by the method of slices, followed by several types of 
calculation methods. The security factor and the place of critical slope failure surface were calculated by the 
Bishop, Spencer, Janbu and Morgenstern-Price methods, which all assume round slope failure surface. 

 
Seepage conditions 

Our aim during the application of GMS SEEP2D was the examination of the ongoing leak process of 
different geometrical and structural embankments. For the demonstration of flow conditions, the mesh of models 
are recorded with one-meter spacing, and on the riverside and protected side, the original ground level runs for a 
10-meter-long stretch. The program defines the streamlines and calculates the total flow rate, velocity conditions, 
and the rates of pore water pressure. The models consider the standard flood water level. 

 

 
Fig. 5:  Flowlines in the embankment around Cigánd 

 
In Figure 5, we can see that the subsoil has an important role in the permeability of embankments because 

most of the flow lines can be seen in the water-bearing layer. The role of the subsoil can also be examined in the 
embankment of Révleányvár (Figure 6).  We encountered thicker topsoil in the subsoil of the Halászhomok 
embankment, which prevents the seepage of water into the subsoil. In this case, most of the streamlines ran 
through the interior of the embankment.  

 

 
Fig. 6:  Flowlines in the embankment around Révleányvár 

 
In the case of the Lázbérc valley dam, the role of the drain inside the dam can be seen during the 

examination of the streamlines (Figure 7). The water leaking into the dam from the waterside accumulates in the 
vertical and horizontal sand layer and exits at the foot of the dam. Thus the dam does not get wet throughout its 
entire cross-section. The concrete wall under the dam blocks the water from leaking through the subsoil. The 
program allows us to demonstrate the water retention ability of the leaking control elements in dams. The 
calibration of the model also included on-site measurements from previous examinations. The flow rate of the 
outflowing water was determined from the collecting tube of the drain system. 

 

 
Fig. 7:  Structural elements of the valley dam of Lázbérc and the computed streamlines 
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Slope stability modelling 
Slope stability examinations were carried out with two programs, the module Slope of SoilVision and 

with the UTEXAS module of Groundwater Modeling System 10. First, we did the modelling in the dry state 
with the Slope module. The program calculated the critical slope failure surface and the related safety factors 
with Bishop, Janbu, Spencer, and Morgenstern-Price methods. Our aim with this examination was to assess the 
safety of the given geometrical embankments knowing the assumed shear strength parameters. 

 Naturally, our aim was to define the effect of water on reducing stability using the leakage model. 
Results of the dry and wet states were compared with each other for all cases and in all slope stability calculation 
methods. We were also able to compare the two software programs, considering which is easier to use and what 
kind of differences will be computed by the two programs. 

 
Slope stability without the consideration of pore water pressure 

The modelling of dry state was necessary to define the stability reducing the effect of water. In this case, 
the system has no water in it, and the given parameters are only the volume weight, cohesion and the internal 
friction angle. The results are shown in Table 7.  

 
Table 6:  Factor of safety for dry condition calculated by SoilVision by different methods 

  Cigánd Révleányvár Halászhomok Lázbérc Rakaca 
Bishop 4.095 2.573 3.746 1.739 2.818 
Janbu  3.879 2.482 3.413 1.623 2.666 

Spencer 4.104 2.575 3.747 1.756 2.829 
Morgenstern- 

Price 4.113 2.574 3.749 1.759 2.883 

 
Slope stability with the consideration of pore water pressure 

We examined the effect of water first with the GMS UTEXAS module (Figure 14). With the UTEXAS 
module, the program only calculates stability with the Spencer method. The UTEXAS slope stability safety 
module was provided with the leakage states calculated by the SEEP2D module from a previously given starting 
circle (the blue circle in Figure 14) using iteration.  

 

 
Fig. 14:  The embankment around Révleányvár with the critical slip surface and the factor of safety 

 
The effect of pore water pressure can be considered in two ways with the Slope module. One way is to 

record the pore water pressure rates calculated by the GMS SEEP2D module into the Slope module. These 
points are intersections of the mesh used by the SEEP2D. The other way is to build the leakage surface 
calculated by SEEP2D module into the Slope module. We did not give pressure values here, but the highest 
seepage surface.  

 
Fig. 15:  The critical slip surface and the factor of safety, calculated by the SoilVision Slope module, at the embankment around Cigánd 
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We simulated the critical slip surfaces (Figure 15.) and compared the obtained safety factors with the 
safety factors referring to the dry state. The difference between the results for dry state and wet state is given in 
Tables 8 and 9.  

 
Table 7:  Changes in the factor of safety compared to a dry state, considering pore water pressure (discrete points) 

  Cigánd (%) Révleányvár (%) Halászhomok (%) Lázbérc (%) Rakaca (%) 
Bishop 43.6 21.9 36.9 10.2 12.3 
Janbu 43.8 19.1 31.5 14.3 16.4 

Spencer 43.6 22.0 36.8 10.1 12.8 
Morgenstern-

Price 43.6 22.0 36.8 10.1 14.5 

Average 43.6 21.3 35.5 11.2 14.0 
 

Table 8:  Changes in the factor of safety compared to a dry state, considering the effect of water (highest seepage line) 

  Cigánd 
(%) 

Révleányvár 
(%) Halászhomok (%) Lázbérc (%) Rakaca 

(%) 

Bishop 24.1 16.4 17.6 10.2 0.8 
Janbu  24.1 14.6 14.1 13.8  1.8 

Spencer 24.2 16.4 17.6 10.1 1.4 
Morgenstern- 

Price 24.2 16.4 17.6 10.3 2.8 

Average 24.1 16.0 16.7 11.1 1.7 
 

We can see from the table that the pore water pressure influences the safety factor. Using the Slope 
module, the highest difference was experienced in case of the embankment of Cigánd, which was caused by the 
shear strength parameters and the geometry of the embankment.  

During our examination, we had the opportunity to compare the two programs used. We limited the 
comparison to the Spencer method because this method is found in both software. The differences are shown in 
Table 10, where we can see that the relative difference is quite small, so we can state that these two methods 
calculate a similar factor of safety values. Considering the data request, we can state that the using of GMS is 
easier, but the structure of the Slope module is more transparent.  The GMS module can be a better solution if we 
have few data. 

 
Table 9:  Comparison of the factor of safety values calculated by GMS and SoilVision programs (Spencer method)  

  GMS, 
UTEXAS SoilVision, Slope Relative difference in 

factor of safety (%) 
Cigánd 2.971 2.555 14.00 

Révleányvár 1.943 2.111 7.96 
Halászhomok 2.815 2.738 2.81 

Lázbérc 1.561 1.595 2.13 
Rakaca 2.679 2.508 6.82 

 
Conclusion 

 
We modelled the seepage conditions of three flood protection embankments near the Tisza River and the 

Lázbérc and Rakaca reservoir dams, complemented with a slope stability test considering the subsoil. During our 
examination water level was correlated to the standard flood level in the case of embankments, while the 
correlation was to the maximal operational water level for the Lázbérc and Rakaca reservoir dams. During the 
modelling procedure, we assumed permanent, so-called steady-state conditions. The complexity is characteristic 
to the geometry of flood protection embankments, the parameters of embankment's materials we took over 
partially from previous works, and partially we derived them from the national technical directive.   

For the valley dams, the characteristic cross-sections identify the constructional elements built in to 
control the leakage. In the case of embankments, it was noticeable that the position of streamlines depends 
greatly on the characteristics of subsoil, the thickness and the leakage factor. The various seepage effects of the 
drainage elements are visible at the valley dams. We prepared leakage models for several cases to explore the 
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effects of mesh density and the width of the embankment foot, which are important parameters in the modelling 
procedure. As mesh spacing increases, the increase in total flow rate can be seen, and with the decreasing of the 
mesh spacing, streamline contours are even more accurate. We compared the total flow rate results with those of 
a previous study in which the subsoil characteristics were not considered. We found that results for the total flow 
rate and the seepage conditions were highly influenced by the consideration of subsoil, which is confirmed by 
experiences in the field. Therefore, we can say that in the case of embankments, we get a better view of the 
seepage conditions, if we consider the subsoil. We used two programs in the slope stability investigation – the 
UTEXAS module of Groundwater Modelling System version 10 and SoilVision’s Slope module – and carried 
out the examinations with multiple slope stability calculation methods. We examined two cases, a dry state and a 
wet state, to examine the effects of water pressure, and seepage on slope stability. We had the opportunity to 
compare the two programs in regard to their results and usage.  

As a summary, we can say that useful results were obtained with the modelling procedures, which can 
provide great help for experts in the water industry. Flood protection works require continuous activity, and fast 
numerical computation methods cast light on potential upcoming failures and thus may help to mitigate or avoid 
catastrophes. 
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