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Abstract 

The article describes issues related to the development of a sensor 

measuring the distance from the end of the shield support canopy to 

the face of the longwall panel. The sensor's task is to detect rock falls 

because in such a case, empty spaces in the coal seam below the roof 

are generated. The sensor is a part of the system which task is to 

predict unfavourable behaviour of the longwall roof affecting the 

continuity of mining. Due to an untypical workplace and difficult 

conditions prevailing there, it was not possible to use a typical sensor. 

The ultrasonic technique was used for this purpose. The next research 

stages related to the development of the sensor were described. Tests 

of various types of ultrasonic transducers, working at different 

parameters, were described. Only transducers with a closed structure 

were considered because they can operate in the presence of high 

dustiness and humidity. The sensor casing was adapted to a specific 

type of shield support. The installation location should not be 

accidental, as an additional hinged shield is mounted at the end of the 

canopy, which is an obstacle in the measuring track and can even 

completely cover it, making measurements impossible. The sensor is 

mounted close to the side edge of the shield support canopy using 

small free space, enabling a measurement. Structural elements of the 

canopy are obstacles in the measuring track and are a source of 

interference of the received signals. The ultrasonic transducers are 

built-in tubes, which direct the ultrasonic wave and amplify the 

received signals. The results of laboratory tests of the model of the 

path measurement sensor are presented. They describe the impact of 

analysed aspects, i.e. the type of transducers used, the structure of the 

surface that the wave is reflected from and the mechanical solutions 

on the quality of received signals. A prototype of a sensor installed 

on shield support is presented. 
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Introduction 

 

In longwall mining systems, proper roof support, provided by powered roof support sections, determines the 

continuity and effectiveness of mining operations. The proper support of the roof protects the working machinery 

from damage and ensures the safety of the personnel working in the area. In order to ensure correct interaction of 

roof support with the rock mass, it must be selected for a particular face, taking into account not only the height 

of the seam but also the geological and technical conditions (Szurgacz and Brodny, 2020). Various types of 

numerical methods are used for this purpose, helping to simulate the interaction of different types of longwall 

support with the rock mass (Islavath et al., 2016; Verma and Deb, 2006; Prusek et al., 2016). 

Studies and analyses prove that poor working parameters of powered roof support sections and their bad geometry 

in the long term cause loss of roof stability, which consequently leads to rockfall (Płonka and Rajwa, 2018; Płonka 

et al., 2017; Prusek and Masny, 2015; Rajwa, 2016; Rajwa et al., 2017). Uncontrolled rockfall occurs in the 

uncovered area between the end of the canopy of the powered roof support and the face of the longwall, causing 

backfilling of the conveyor, which causing interruptions in mining and putting the workers in the area at risk 

(Langosch and Volker, 2003; Chen et al., 2017; Andras et al., 2017; Rajwa et al. 2020). Cracks in the main roof 

of the longwall in unpredictable places cause a sudden increase in the pressure induced by the roof, may in extreme 

situations cause damage to the powered roof support, which consequently threatens the collapse of the longwall 

(Wen et al., 2005; Le, 2021). In a publication (Rajwa et al., 2020), it has been proven that a proper geometry of 

the longwall support during mining operations, when the pressure induced by the roof is distributed over the entire 

canopy area, significantly reduces the cracking zone in the roof rock of the longwall. 

One of the most important factors in providing stable operation of a longwall system is to keep the distance between 

the end of the canopy and the face of the longwall as short as possible. In particular, after the shearer passes through 

before the support is moved towards the face of the longwall, the unsupported area of the roof increases, and if 

this situation continues for a long period of time, it may also be the cause of a part of the roof breaking off. (Haijun 

et al., 2016; Frith, 2013; Rajwa, 2020). In the cases described above, voids are formed between the end of the 

canopy and the face of the wall, and their detection can be an indicator of the condition of the roof and thus also 

of the quality of the wall guidance. 

The introduction of monitoring systems and sensors operating wirelessly in the mine, often forming underground 

multi-node communication networks, has brought new opportunities in terms of recording and controlling powered 

roof support parameters. Connecting the mine's underground with the infrastructure located on the surface, as well 

as with the global Internet, has made it possible to observe the condition of the roof support in real-time. 

Monitoring the performance of powered roof support opens up new possibilities in terms of prediction and early 

warning of potential roof collapse hazards so that negative phenomena can be addressed and prevented earlier 

(Cheng et al., 2020; Rajwa et al., 2019). Currently, the source of information in these types of systems is the 

monitoring of the working pressure in the legs of the longwall support using battery-powered sensors. (Wang et 

al. 2018; Jingyi Cheng et al., 2018; Cheng et al., 2020; Rajwa et al., 2019; Szurgacz and Brodny 2019; Szurgacz 

et al., 2020). For the prediction of negative phenomena occurring in the roof, the information on the geometry of 

individual parts of the support through measurements with inclinometers is important (Witek and Prusek, 2016; 

Kalentev et al., 2017). 

 

 
Fig. 1 Shield Support Monitoring System structure 

 

In 2017, the international consortium, with the participation of the KOMAG Institute of Mining Technology, 
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PRASS III (Productivity and safety of shield support). Its aim is to develop a system that will enable detection and 

prediction of threats related to rock falls in a longwall panel on the basis of monitoring the parameters of shield 

supports operation (Jasiulek, 2019). The hardware part of the system installed on the shield support, which realises 

the measurement of the geometry, is called Shield Support Monitoring System (Jasiulek et al., 2019). The structure 

of the system is shown in Fig. 1. The task of the system is to measure the inclination angles of individual parts of 

the shield support and to measure the distance between the shield support and the longwall (Fig. 2).  

 

 
Fig. 2. Tip to face distance 

 
The sensors are connected to the central unit SSMS-C, which is connected wirelessly to the pressure measurement 

system in hydraulic legs. The measurement data are sent to the server located on the mine surface. The behaviour 

of the working roof is analysed there. 

The article describes the issues related to the development of the sensor that realises the mentioned distance 

measurement. The sensor's task is to detect rock falls because in such a case, empty spaces in the coal seam below 

the roof are generated. The untypical installation location of the sensor and the requirements of the ATEX 

2014/34/EU Directive made it necessary to develop a dedicated sensor adapted to the prevailing conditions in the 

working. As the shield support follows the advance of the longwall, the maximum operating range of the sensor is 

assumed to be 5 m. Under normal operating conditions, the support is practically pushed to the face of the longwall, 

and the distance increases only after the longwall shearer is passed by the thickness of the cutting drum. 

 

Material and Methods 

 

The described sensor is to measure a distance between the end of the shield support and the face of the 

longwall. Taking into account the difficult conditions prevailing in a longwall panel, the sensor uses ultrasonic 

technology. Ultrasound is well suited for measuring distances up to several meters, and its range of application is 

closely related to the frequency of generated waves (Biryukova and Koretskaya, 2020; Janu and Sramek, 2020; 

Zhmud et al., 2018; Bartoszek and Kost, 2018; Xu et al., 2017). A measuring method, which consists of measuring 

the propagation time (ToF) (Zafari et al., 2019; Plets et al., 2019) of waves reflected from the longwall surface, 

i.e. measurement of the echo (Fig. 3), was applied. 

 

 
Fig. 3. Distance measurement based on wave propagation time measurement 

 

The distance is determined using the following formula (Eq. 1): 

 

 𝑑 = 𝑣𝑈𝑆 ∙
𝑡𝑝

2
       (1) 

 

where: tp - the time between the wave sent and received echo, vUS - speed of ultrasonic wave propagation. 

The speed of ultrasonic wave propagation in the air is determined according to the relationship (Eq. 2) (Gudra, 

2005). 
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 𝑣𝑈𝑆 = √
𝜅(𝑇)𝑝0𝑇

𝜌0𝑇293
       (2) 

 

where: 

ρ0 – gas density under normal conditions, p0 – gas pressure under normal conditions, T – gas temperature, 

T293 = 293 K, ҡ(T) – dimensionless adiabate exponent equal to cp/cv, cp – specific heat at constant pressure, 

cv – specific heat at constant volume. 

According to formula (Eq. 2) and information in the literature (Slusariuc et al., 2018; Kim et al., 2019), the medium 

temperature has the greatest impact on the speed of wave propagation. The system will be equipped with a 

temperature measurement function. In the calculation procedures used, the speed of ultrasonic wave propagation 

is expressed by formula (Eq. 3) (Gudra, 2005): 

 

 𝑣𝑈𝑆 = 331.85(1 + 0.00183𝑇)     (3) 

 

The ultrasonic wave attenuation coefficient in the gaseous medium can be described by the following formula 

(Gudra, 2005): 

 

 𝜁 =
2𝜋2𝑓2

𝑝
√

𝜌0𝑇0

𝜅(𝑇)3𝑝0
[
4

3
𝜂(𝑇) + 𝜎(𝑇)

𝜅(𝑇)−1

𝑐𝑝(𝑇,𝑝)
]    (4) 

 

where: f – wave frequency, p – gas pressure, ρ0 – gas density under normal conditions, p0 – gas pressure under 

normal conditions, T – gas temperature, η – dynamic viscosity index, σ(T) – thermal conductivity coefficient, ҡ(T) 

– dimensionless adiabate exponent equal to cp/cv, cp – specific heat at constant pressure, cv – specific heat at 

constant volume. 

Assuming small changes in atmospheric pressure, formula (Eq. 1) can be presented in a simplified form (Gudra, 

2005): 

 

 𝜁 =
𝑓2𝑘(𝑇)

𝑝
       (5) 

 

where: k(T) - constant for a specific temperature, p - gas pressure, f - wave frequency. On the basis of the presented 

relationships (Eq. 4) and (Eq. 5), it can be clearly stated that the frequency of the generated signal has the greatest 

impact on the wave attenuation in the gaseous medium. 

The selection of proper components for the generation and reception of ultrasonic waves was an important 

task. Several types of ultrasonic transducers (Fig. 4) differing in their operational parameters were tested (Tab. 1). 

 

 
Fig. 4. Selected ultrasonic transducers 

 

The choice of ultrasonic transducers was limited by several criteria related to the place of operation of the sensor. 

The sensor will be installed at the end of the shield support canopy. It is a place exposed to damage due to close 

contact with operating longwall shearer cutting a coal deposit. The sensor should be resistant to damage, for 

example, from ejected rocks during the mining process. However, its dimensions should not be too large and 

should not stand out too far from the roof of the longwall shearer's casing as it could be hit by the shearer's cutting 

body. Therefore, the dimensions of the transducers should not be too large. Transducers with a diameter of 25 mm 

were selected. Such a size of sensors ensures the assumed measuring range of several meters. 
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Tab. 1. Parameters of selected ultrasonic transducers 

Parameter Transducer No.1 Transducer No.2 Transducer No.3 Transducer No.4 

Center Frequency 25 kHz 32,8 kHz 40 kHz 40 kHz 

Transmitting Sound Pressure 
Level (0dB re 0.0002μbar per 

10Vrms at 30cm) 

113 dB 113 dB 115 dB 110 dB 

Receiving Sensitivity 

(re 1 volt/μbar) 
-63 dB -67 dB -70 dB -72 dB 

Transducers type 
Transmitter 

 and receiver 

Transmitter 

and receiver 

Transmitter 

 and receiver 
Transceiver 

Diameter 25 mm 25 mm 25 mm 25 mm 

 

The use of larger-size sensors would not be justified, also due to the higher power needed to generate a wave. Due 

to the possibility of operation in potentially explosive atmospheres due to the presence of methane and coal dust, 

the sensor must have an intrinsically safe design, in accordance with the ATEX directive, and such a design results 

in maximum power limitations. Importantly, the sensor is powered by a built-in battery, so it must be as energy-

efficient as possible, as it should work without the necessity of replacing the battery for at least 1 year. The 

characteristic feature of the selected sensors is their closed structure, which makes them resistant to harsh 

environmental conditions prevailing in the longwall panels. The selected ultrasonic transducers vary in frequency. 

Two types of selected transmitters work in a transmitter-receiver configuration. One type works as a transceiver, 

i.e. one component, which is used both to generate and receive ultrasonic waves. 

The ultrasonic transducer test stand is presented in Fig. 5. 

 

 
Fig. 5. Test stand for measuring the parameters of transmitted signals 

 
Tab. 2. Voltage of the transmitters supply signal 

Transducers type 
Driving voltage 

[Vrms] 

1 15 

2 20 

3 20 

4 50 
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The ultrasonic waves were reflected from a moving object at a maximum distance of 5 m. A frequency-controlled 

generator was used in the tests, which was each time adjusted to the resonance frequency of the tested type of 

ultrasonic transducers. The generator was connected through the prepared microcontroller control system, enabling 

cyclic sending of the signal to the transmitter in the form of an impulse of duration 2 ms. Tab. 2 lists the voltage 

of the signal used to drive the transducers during testing. The receiving transducer is connected to a prepared 

system enabling amplification and bandpass filtering of the received signal. The signal was recorded using a digital 

oscilloscope. 

 

Results and Discussion 

 

The graph in Fig. 6 presents the signal level recorded by selected ultrasonic transducers described in 

Tab. 1. 

 

 
Fig. 6. The amplitude of signals recorded by the transducers from Table 1 

 

According to Eq. 5, the frequency of ultrasonic waves has a significant impact on their damping rate during 

propagation in the air and thus on the measuring range of the system. This is confirmed by the results of the tests. 

The highest amplitude was recorded using transducers with the lowest frequency 25 kHz. The lowest signal 

amplitudes were recorded in the case of transducers of 40 kHz frequency. It was observed both in the case of 

transmitter-receiver pairs, as well as in the case of a transceiver, which was even given a higher amplitude trigger 

signal. On this basis, we can conclude that the transmitters with the lowest possible frequency should be used. 

However, the use of a lower frequency also has disadvantages. The lower frequency means a longer wavelength, 

and therefore it takes more time to give a trigger signal with the same number of periods. This increases the sensor's 

blind spot, i.e. the minimum limit of its correct functioning. In this area, the trigger signal and interference from 

the transmitter overlaps the echo signal, i.e. the signal reflected from an obstacle in close proximity. This signal is 

not detected by the receiving system. In the sensor described above, it was decided to use an indirect solution, i.e. 

32.8 kHz transmitters were selected. As shown in Figure 6, the amplitude of the signal received with this transducer 

was much higher than with 40 kHz transducers. The highest possible amplitude of the recorded signals was taken 

into account due to the unknown structure of the longwall face, which would undoubtedly affect signal attenuation. 

During the tests, a smooth surface was used from which ultrasonic waves were reflected; this surface was set at an 

angle close to a right angle in relation to the measuring track. The longwall face, mined by a longwall shearer, is 

flat during normal operation and becomes irregular after rock falls. To simulate the mining conditions, the 

measurements were carried out with the use of an inhomogeneous surface made of coal pieces. The use of coal 

simulated a material of comparable parameters to the real ones, i.e. the sound absorption coefficient. Both surfaces 

are shown in Fig. 7. The results are presented in Fig. 10. 

The level of signals reflected from an uneven coal surface is significantly lower, which will negatively affect 

the measuring range of the sensor. The sensor will be attached to the canopy of the shield support in such a place 

as to be as low as possible exposed to damage from the cutting head. Depending on the design of the shield support, 

there may be many obstacles between the sensor and the longwall face, mainly structural components of the 

canopy.  
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Fig. 7. Flat and uneven coal surface used for testing 

 

In the shield support shown in Fig. 14, for which the sensor is dedicated, the end part of the canopy is pulled out, 

and at the end of the canopy, there is a longwall face front shield.  In such a case, the received signal does not have 

the form shown in Fig. 3 but can take the form similar to the one shown in Fig. 8.   

 

 
Fig. 8. Signal heavily disturbed 

 

From such a time process, it is difficult to distinguish the proper part representing the echo. In order to 

minimise the impact of interference from obstacles around the measuring track and at the same time increase the 

amplitude of the received signal, it was decided to place the transducers in tubes that direct the ultrasonic waves 

(Fig. 9). The tube in which the transmitter is placed has an end bevelled at 45° to guide the reflected waves in the 

chosen direction. 

 

 

Fig. 9. Ultrasonic tubes 
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Fig. 10. Signal level reflected from two types of surface: flat and uneven using the 32.8 kHz ultrasonic transducers 

 

Fig. 11 and 12 present the measurements results. The first figure shows a strong, undisturbed echo signal. In 

this case, the result is easy to interpret.  

 

 
Fig. 11. Strong signal recorded  

 

 

 
Fig. 12. Weak signal recorded  
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In Figure 12, the red marked echo has a comparable amplitude to interference from obstacles located just next to 

the measuring track. Therefore, the sensor should use proper filtration of received signals with an algorithm 

searching for the correct echo signal. 

The sensor is shown in Figure 13. It was made of stainless steel, which ensures greater resistance to damage, 

and the shape of the enclosure was adapted to the structure of the shield support. Figure 14 shows the shield support 

with a marked SSMS-S sensor mounting place. It also shows its model mounted on the canopy. There is only a 

small free space through which ultrasonic waves can propagate in a longwall face direction because, in front of 

the sensor, there is a pull-out end part of the canopy and an articulated longwall front shield. 

 

 
Fig. 13. SSMS-S sensor 

 

 
Fig. 14. SSMS-S sensor and its mounting location 

 

Figure 15 shows a block diagram of the part responsible for generating the signal informing about the moment 

of ultrasonic wave reception. The first element in the presented measurement track is an active bandpass filter. 

The passband frequency range is adjusted to selected ultrasonic transducers. The second part of the circuit 

determines the envelope of the received signal. The envelope is given to the comparator, which in the case of 

signal detection generates a signal which is a source of interruption in the microcontroller. 

 

 
Fig. 15. Block diagram of the SSMS-S sensor electronic – system generating the signal informing about the moment of ultrasonic wave 

reception 
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Figure 16 shows the signal received by the sensor during measurements. The microcontroller first interprets the 

envelope signal of the received signal marked in purple and the signal indicating the presence of the signal marked 

in green.  

 

 
Fig. 16. Signal recorded by the sensor measuring channel 

 

In addition to the correct response, each signal contains additional unresponsive pulses. The first impulse is 

caused by the transmitter system, whose vibrations are transmitted to the receiving system (Akatov et al., 2019). 

The next pulses are the expected echo reflected from the longwall face and additional wave reflections from other 

obstacles (Kuric et al., 2019). Since the structure of the longwall is heterogeneous, the form of the received signal 

may be different. The microcontroller interprets each received signal pulse whose energy is large enough to trigger 

the output of the comparator, which is a part of the measuring path (Pástor et al., 2020). The comparator generates 

a signal marked green. The selected parameters of the recorded signals are interpreted (Sága et al., 2019). These 

parameters are subjected to digital FIR filtration, according to the following equation (Eq. 6): 

 

 𝑦(𝑛) =
1

𝑁
∑ 𝑥(𝑛 − 𝑘)𝑁−1
𝑘=0       (6) 

 

To choose the right impulse, representing the echo of the signal reflected from the face of the longwall, a coefficient 

is defined by the following formula (Eq. 7): 

 

 𝑤𝑖 = ℎ1𝑖 ∙ 𝑤𝑎𝑖 + ℎ2𝑖 ∙ 𝑤𝑡𝑖 + ℎ3𝑖 ∙ 𝑤𝑒𝑖    (7) 

 

where: hxi - empirically matched weights, wai – pulse amplitude, wti – time of pulse maximum, wei – pulse energy. 

The coefficient that takes the highest value decides. For its calculation, the following factors are taken into account: 

the amplitude of the voltage representing a single pulse, propagation time till the moment when the voltage is 

highest, as well as the energy of the whole pulse (Kuric, 2011). A weight is assigned to each coefficient. Values 

of weights are selected empirically and depend on the specific location of the sensor and the type of shield support. 

 

Conclusions 

 

The SSMS-S sensor is used to measure the distance between the shield support canopy and the longwall face 

and is part of a system that detects and predicts threats related to rock falls. The sensor provides information about 

the condition of the longwall roof because the empty spaces appearing after the rock falls indicate abnormal 

behaviour of the roof. Improper support of the roof in the long term may be the reason.  Development of a dedicated 

sensor was necessary due to the unusual location of the sensor, harsh environmental conditions, legal requirements 

and unusual requirements for its operation, i.e. operation for at least one year on one set of batteries. 

Based on the tests, it can be concluded that the chosen measurement method using ultrasonic waves is suitable 

for the assumed distance of several meters. Due to the presence of obstacles in the measurement path, which are 

the source of interference, ultrasonic tubes were used to direct the generated waves and a method of recognising 

the echo signal dedicated to this application was developed. 

The sensor and the entire system are currently being tested under real conditions at the mine. 
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