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Abstract 
This study introduces a computer modeling approach for mining 

vehicle fleet monitoring. Computer modeling helps to reduce 

prototyping costs and lower the risks of initial launch failure by 

analyzing and configuring the prototype in order to test various 

options and find the most fitting ones. We show in the first part of the 

study that using a computer modeling method, it is possible to test 

numerous combinations of metrics acquired during vehicle 

monitoring in the simulation rather than adding equipment to vehicles 

during prototyping Usage of real hardware during the prototype 

phase adds downtime to the vehicle fleet and reduces productivity. 

Along with those drawbacks, it also introduces the possibility of 

additional costs if the configuration needs to be changed later. By 

leveraging modern time-series data storage solutions, we present an 

easier approach to analyze real-world data retrieved using a 

simulation as a proxy. In the second part of the paper, we then 

propose a workflow of integrating SUMO with a time-series storage 

database through an Application Programming Interface (API) called 

TraCI, allowing for aggregation of vehicle fleet data over time and 

visualizing that data on the dashboard. At the end of the paper, we 

show a measuring methodology and provide a viable solution for the 

efficient transfer of telemetry data. 
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Introduction 

 

Mining is a capital-intensive sector that necessitates the purchase of big equipment worth hundreds of millions 

of dollars. Mine trucks are the most commonly utilized pieces of equipment for material hauling in surface mining 

operations. On the other hand, their maintenance costs account for a major amount of the total operating cost – 

usually more than 50% of the operational cost (Subtil et al., 2011). Maintenance costs cannot be reduced because 

currently existing costing methods and models do not account for all critical restrictions. 

The amount of ore and waste that needs to be hauled each year over the mine's life is determined by the mine 

production schedule of an open pit. Mine haulage trucks play an important role in transporting these materials due 

to their flexibility and efficiency. Mine trucks, on the other hand, are expensive pieces of machinery that require 

routine maintenance in order to operate safely and efficiently. In addition, mine trucks must undergo a major 

maintenance service after a certain number of working hours, which primarily includes engine replacement. (Topal 

et al., 2010) estimates that the cost of these maintenance services can account for 30–50% of the overall haulage 

cost of a surface mining operation. As a result, it is critical to optimize the mine truck fleet's schedule so that the 

fleet's utilization is maximized while maintenance costs are kept to a minimum. 

With the current improvements in the Internet of Things (IoT) technologies, more industries are incorporating 

these technologies into their operations in order to obtain a better understanding of their processes and find new 

methods to improve them. In conjunction with big data technology and cloud computing, the Internet of Things 

enables continuous monitoring of nearly any equipment, including vehicles. Because of the higher hazards to 

human health and the costly damage to equipment in the mining business, analyzing that data can be valuable. 

While there appears to be a multitude of solutions in the field of logistics and long-distance general goods 

transportation, transport monitoring using Global Positioning System (GPS) has been extensively used previously 

(Greenfeld, 2002). Despite the fact that there are numerous solutions for equipment and staff monitoring, there 

appears to be a lack of developments in vehicle fleet monitoring, particularly in the mining industry. Recently, IoT 

has been increasingly used for transportation monitoring (Čaušević et al., 2018), utilizing less expensive computer 

devices and transport protocols such as LoRaWAN (Navarro-Ortiz et al., 2018). 

Because of the industry's characteristics, as well as variances in the vehicles themselves, the requirements for 

data transferring security regulations, and telemetry gathering device interfaces with the vehicles, the bulk of 

solutions available is not applicable to the mining industry. In their publication, Chaulya & Prasad (2016) show a 

method for mine transport surveillance that includes obtaining camera feeds and detecting intrusions. While their 

work focuses on the production management aspect, we believe it is also worthwhile to explore a solution for an 

automated method of telemetry gathering, which will allow monitoring parameters such as humidity, tire pressure, 

ambient temperature, and other variables that are unique to the industry segment in order to ensure process security 

and reliability. 

It is beneficial to employ computer modeling to produce a dependable outcome while building a new solution 

in order to reduce the cost of integration and limit the chances of failure. Nowadays, computer modeling software 

is widely used in a wide range of businesses, particularly those with a higher potential of hazard. In this paper, we 

propose an approach for mining vehicle fleet monitoring using Simulation of Urban MObility (SUMO) 

(Krajzewicz et al., 2002) vehicle traffic modeling software applied to the mining industry. We are using SUMO 

since it is one of the most well-established road traffic modeling tools (Krajzewicz et al., 2012), and it has proved 

to be a reliable and convenient software package that we used in our previous work proposing a method for traffic 

control system configuration validation (Ivanov & Abu-Abed, 2019). 

The first section of the paper discusses the modeling software we want to employ and shows how to simulate 

a fleet of mining vehicles. Then we show how, in the early stages of a prototype, such simulations can substitute 

costly testing hardware such as real-life automobiles. Then, using an Application Programming Interface (API) 

called TraCI, we offer a method for connecting SUMO with InfluxDB, a time-series data storage system, to enable 

the aggregation and visualization of vehicle fleet data over time. 

 

Overview of vehicle fleet computer modeling software 
 

Modeling traffic flows is the basis of this work. Because of this, it is important to choose the most appropriate 

tool that would solve this problem. Currently, there are many solutions for various kinds of computer simulations, 

including simulations of traffic flows. In this area, there are three most common solutions 

• PTV Vissim – a leader in the market of software systems for modeling traffic flows and has many different 

functions, but is available only as a paid version 

• SUMO (Simulation of Urban Mobility) – is an open-source portable traffic flow simulator that allows you to 

simulate large road networks 

• Quadstone Paramics Modeller – a product of Quadstone Paramics, which allows visualizing the modeling 

process using 3D graphics, but only the paid version and demo version are available – the latter, in turn, does 

not allow you to create and edit models 
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PTV Vissum (Fellendorf & Vortisch, 2010) can be considered one of the most advanced solutions for traffic 

computer modeling currently. However, while providing many useful features specific to urban traffic modeling, 

those features could not be used in the context of vehicle simulation in the mining industry. Hence, for our proof-

of-concept, we decided to opt for a smaller solution that still covers our needs in terms of functionality, which are: 

 

1. Ability to control simulation from an external program 

2. Ability to read individual vehicle state in the simulation 

3. Microscopic level of simulation 

 

For our case of vehicle telemetry data gathering, we require a software solution that could simulate mining 

vehicles and their environment on the microscopic level, primarily because of the small travel distances inside the 

mining plant. Several traffic simulation tools out there fall into one of these categories depending on which level 

of abstraction they provide during modeling (Lopez et al., 2018): macroscopic when only traffic flow dynamics 

are simulated, only generic aspects of the flow can be analyzed, such as traffic density; microscopic, when each 

vehicle and its dynamics are modeled individually; mesoscopic – a combination of macroscopic and microscopic 

approaches; submicroscopic – each internal function of the vehicle simulated. 

Microscopic level modeling is sufficient for our purposes since it gives adequate information during the 

simulation of even slow vehicles in a smaller area, which the mining operation has in abundance. It should be 

feasible to reproduce a given mining site using a microscopic traffic computer modeling approach. This might be 

accomplished, for instance, by using publicly available satellite photos of a given location and reproducing existing 

monitoring transport routes in the model. 

Even though it might not be as feature-rich, we are using Simulation of Urban MObility software for 

demonstration purposes, which still provides microscopic traffic modeling capabilities (Krajzewicz et al., 2003), 

and it is freely available to use because of the open-source distribution model. Another important feature of SUMO 

is a continuous simulation of traffic flow. This type of simulation allows improving accuracy of simulation (Fig. 

1): 

 

 
Fig. 1.  Continuous simulation of traffic flow compared to discrete simulation 

 

SUMO is made up of many software modules that allow for the pre-processing of simulation data, the 

customization of the model environment, and the visualization and simulation of the data. Following that, we will 

go through a few modules that are essential for creating a simple simulation: SUMO – the simulation program 

itself which does not have a graphical interface and could be used separated by calling it from the Command Line 

Interface (CLI); SUMO-GUI – a graphical interface for the simulation program which is cross-platform and can 

be run on any widely used operating system; NETEDIT – a model editor that allows to create and edit model 

environments by defining road networks, vehicle routes and flows and making it easy to configure complex 

models. Fig. 2 shows an example of a typical road network model created in NETEDIT. 

 

 
Fig. 2.  Typical road network created with NETEDIT 
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Telemetry time-series data processing and storage 

 

A time series is an ordered succession of values of a variable at evenly spaced time intervals. As a result, it is 

a series of discrete-time data. Time-series can include data that has been associated with date and time, such as 

measurements from IoT devices. 

A time series is made up of measurements that are sorted on a timeline to give information about underlying 

trends. Because there is a relationship between time and measurements, changing the order can affect the 

interpretation of the data (Joshi et al., 2017). Hourly temperature recordings at a specific weather station, daily 

measurements of the closing price of a certain stock, and so on are examples of time series. 

The majority of telemetry data is recorded as time-series data, consisting of data points spread over time at 

regular intervals. Air temperature collected at regular intervals, stock price, and so on are examples of time series 

data. There are metrics in the mining sector that may be of interest to a certain sub-branch of the industry. However, 

when it comes to vehicle fleet monitoring, there may be certain common indicators that may be used to better 

understand how they operate. Time-series format is also convenient for monitoring because it allows to detect 

outliers in the data (Jagadish et al., 1999) more easily, and by employing current advancements in machine 

learning, it becomes possible to detect anomalies in time-series data more quickly and accurately (Kanarachos et 

al., 2017). 

There are numerous time-series database solutions available today; some are tailored to specific needs, such 

as software application monitoring, while others are general-purpose databases that can be used in a variety of 

projects, ranging from simulation data logging (as we do) to IoT telemetry logging. In fact, there are so many 

different types of time-series databases that researchers are conducting a study in both specific sectors (Fadhel et 

al., 2019) and more broad surveys (Bader et al., 2017). 

A TSDB is a database type that is designed to store time series or data that has been time-stamped. It's 

designed specifically to deal with time-stamped metrics, events, or measures that change over time. A TSDB 

enables users to build, enumerate, update, destroy, and manage diverse time series more efficiently. The main 

distinction between time series and normal data is that you usually ask questions about it across time. Nowadays, 

the bulk of businesses generates an enormously big stream of measurements and events (time series data), 

necessitating the need for a TSDB. For our purposes, we will be using InfluxDB since it is the most top-ranking 

(Fig. 3) time-series database (TSDB) recently (Naqvi et al., 2017). 

 

 
Fig. 3.  Ranking of the top-10 time-series databases (Source: Naqvi et al., 2017) 

 

InfluxDB does not depend on any other DBMS and uses a SQL-like language called InfluxDB Query 

Language (InfluxQL) (Bader et al., 2017) and has proven to work in IoT applications (Nasar & Kausar, 2019). 

Our justification for using InfluxDB is that, while it is newer on the market than OpenTSDB, it has more 

capabilities and – more significantly – has an integrated dashboard, which eliminates the need for us to set up a 

separate dashboard solution such as Grafana (Grafana Labs, 2020). Of course, in real-life applications choice of 

the database is not purely on the looks and functionality of the dashboard and the like, but that is a separate 

extensive topic outside of the scope of this paper. 
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Material and Methods 

 

In this portion of the article, we detail the tools and procedures we used to generate a digital model of a mining 

site using the SUMO traffic modeling software solution. Following that, we concentrate on developing a simple 

software system that can collect telemetry data from automobiles, emulating the real-world application of such a 

system. Finally, we show how to use InfluxDB and its interactive time-series database and exploration tool to 

visualize gathered telemetry data. 

 

Creating mining site computer model 

 

Our proposed model consists of two parts: SUMO road network with the graphical representation of a mining 

site and a Python program that would use TraCI to control the simulation. This will give us easy access to the 

simulation data and make it possible to use it for telemetry. Because it is time-consuming to set up a realistic traffic 

simulation scenario, which has been done more in-depth by (Bieker et al., 2015) and others, we will take some 

liberties since our aim is to present a proof-of-concept for a way to use computer modeling in mining vehicle fleet 

monitoring without relation to a real mining site. 

Using NETEDIT software that is a part of the SUMO package, our model will describe road networks and 

routes which vehicles can take using those roads. NETEDIT allows using a background image for the model. This 

will help to create a graphical representation of a mining site that is being simulated. For demonstration purposes, 

we will be using part of a Bingham Canyon in Utah, USA, as an example representation of a mining site by using 

satellite image freely accessible from Google Maps (Fig. 4). 

 

 
Fig. 4.  Bingham Canyon, Utah (Copyright Google, Copyright Maxar Technologies, State of Utah, USDA Farm Service Agency) 

 

By importing this image as a background image, it is possible to closely recreate a road network segment for 

this particular mining site. This map can be larger for real-life applications and can consist of multiple images 

stitched together, similar to how satellite images are stitched together for maps. By placing junctions and 

connecting them with the edges, a road network is created (Fig. 5), which can then be used to define transport 

routes. 

 

 
Fig. 5.  Mining site transport network 
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Set up of simulation software 

 

In this part of the paper, we develop the model by creating a small Python program that would launch and 

interact with the simulation created in NETEDIT. 

After the model in SUMO has been created, the next part of the simulation would reside in a Python program 

that would use TraCI to launch and control the simulation. Therefore we will not be using SUMO to launch the 

simulation, but a Python program that will launch SUMO through TraCI. In the same program, the management 

of the vehicles will be done. Our development environment is as follows: Python 3.7 on macOS High Sierra 10.13 

using pipenv virtual environment manager and a TraCI library that is included with the SUMO installation 

(German Aerospace Center (DLR), 2020). 

This package enables us to run external simulations in server mode and connect to them automatically from 

within the program. We may alter the simulation using the TraCI API by adding and removing vehicles, as well 

as assigning any newly formed vehicle to a route that was previously defined in the model. Following the creation 

of the vehicles, we would query them for telemetry data at regular intervals. We will ask for acceleration 

measurements in meters per second squared (the default SUMO unit for acceleration) and angle measurements in 

degrees in this example. We're utilizing InfluxDB as our time-series database. Thus, we are also using the InfluxDB 

Python module. On the same computer, an InfluxDB instance is started using binaries from the official site 

(InfluxData Inc, 2020). 

The design of our simulation involves three steps: data acquisition, data transmission, and storage of acquired 

data (Fig. 6), which closely relates to a real-life implementation of the fleet monitoring system. Our Python 

program will help us complete all of the three components (Prinsloo & Malekian, 2016). 

 

 
Fig. 6.  General overview of a monitoring system (Source: Prinsloo & Malekian, 2016) 

 

When the simulation has been initialized using TraCI, we will insert five vehicles into the simulation using 

the procedure shown in Fig. 7. This program will add a new vehicle into the simulation following one of the 

predefined routes in the simulation that use the following name conversion: route_#, where # is the index number 

of the route starting from zero. 

 

 
Fig. 7.  Python program that controls SUMO simulation 
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Running the program from Fig. 7 will launch SUMO simulation that has been defined in the configuration 

file "model.sumocfg". This program will add five mining vehicles (Fig. 8) and run in an infinite loop: 

 

 
 

 
Fig. 8.  SUMO simulation launched using TraCI Fig. 9.  The average speed of vehicles in the simulation 

 

While running, the SUMO has access to all the information in the running simulation, such as vehicle 

positions, their speed, angle, etc. It is possible to either manually read this data using a graphical interface in 

SUMO (Fig. 9) or, since we are using TraCI, we have the opportunity to read all this data programmatically – 

effectively simulating telemetry data aggregation from a fleet of vehicles. 

 

Collecting telemetry data and storing it in InfluxDB 
 

After the model has been set up and operating, the next step is to integrate it with InfluxDB for time-series 

data collecting and storage. As previously stated, for this example, we will use the data point write procedure to 

write the acceleration and angle of each vehicle in the simulation. Using the Python client library makes this 

possible. We can bypass network configuration procedures like NAT configuration and port forwarding because 

the InfluxDB server is hosted on the same system as the simulation. 

It is possible to store every measurement from every vehicle at some predefined period as a time-series using 

the InflixDB client Python API. Furthermore, in order to simulate the implementation of a real-life embedded 

system device that collects telemetry frequently and then averages the results, we will aggregate measurements 

each frame and, at the time of writing, averaging the sum of all recent measurements over the number of samples 

collected, effectively simulating real-world behavior. It is important to stress such an approach since it allows to 

bring simulation closer to what would happen in real-life simulation and will help avoid unexpected results when 

the prototype is transferred from the model into a real-life scenario. 

Figure 10 shows a modified version of the program that now collects vehicle acceleration and angle 

measurements while also publishing the average value of the values to the InfluxDB database every five seconds 

using Python client API. 

 

 
Fig. 10.  Modified Python program which now collects measurements from the simulation and sends them to InfluxDB 
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The next step would be to log into the dashboard and configure the visualization of the measurements once 

the simulation has been running and writing measurements to the database for some time. Since InfluxDB comes 

with an already integrated graphical interface, we will be using that instead of some additional solution. Given the 

data we have, we will set up two graphs for each of our measurements. 

First, we are going to set up truck median acceleration. This metric allows to the analysis of characteristics 

of vehicle movement. We will display this metric as a stacked histogram for each of the five trucks (Fig. 12a). 

InfluxDB has a data query graphical user interface that allows to easily select and filter time-series data entries 

while also applying aggregate functions to the result. In the case of truck acceleration, we are interested in median 

value over time (Fig. 11): 

 

 
Fig. 11.  Modified Python program which now collects measurements from the simulation and sends them to InfluxDB 

 

Another metric we are going to display is truck angle derivate (Fig. 12b). This metric will show the rate at 

which the angle of each individual vehicle changes its angle. It can help monitor drivers' behavior and prevent 

hazardous situations. It is worth noticing that we got rather high values for this metric in our experiments primarily 

because of rather sharp corners in paths in the model. Therefore it is advised to increase the resolution of the model 

in order to mitigate this. 

 

 

 
Fig. 12.  (a) individual truck median acceleration in m/s2, (b) individual truck angle derivative in degrees 

 

Discussion 
 

We have shown that it is possible to use computer modeling to get vehicle telemetry sample data. However, 

a few unanswered questions remain. In this section, we discuss alternative implementations of the measurement 

process utilizing real hardware in this section of the study, as well as the problem of efficient data transport. 

RQ1: How to transfer results acquired during the modeling process? 

Here the term "results" refers to the telemetry data model that has been obtained, the data format, and the 

post-processing procedures that are performed in the dashboard for full data display. Even though it is possible to 

sample raw location data from the simulation directly, we believe it would be of no use because the values of x 

and y coordinates on a plane in the simulation environment are raw, which means they follow the internal 

simulation format and are thus meaningless to the user. One solution would be to utilize coordinate mapping to 

convert the simulation's Cartesian coordinates to the geographical coordinates of the mining site used in the model. 

However, while this would add extra complexity to the simulation system, it would still be doable. The coordinate 

mapping would match the vehicle's GPS position. However, as Prinsloo & Malekian (2016) point out, this method 

of transportation localization is not always accurate enough in complicated situations. In this scenario, RFID 



Fares ABU-ABED and Aleksei IVANOV / Acta Montanistica Slovaca, Volume 26 (2021), Number 4, 593-602 

 

601 

markers are recommended since they can aid in vehicle tracking. Furthermore, if there is a requirement to monitor 

internal vehicle parameters, it is worth mentioning and maybe using an on-board diagnostic system (OBD II) 

(Malekian et al., 2016) while building an embedded system for vehicle monitoring is worth a try. However, due 

to the unique nature of vehicles in the mining industry, there is no certainty that such a system will be installed. In 

this situation, simply tracking the location of the vehicle and other external sensor measurements (such as 

temperature, vibration, and so on) may be sufficient to offer adequate information for fleet management decisions. 

RQ2: How to transfer telemetry data efficiently? 

In general, an efficient data transport method is critical for vehicle telemetry in particular. Currently, 

LoRaWAN appears to be a promising data transfer method for IoT systems. LoRaWAN is a low-power wide-area 

network technology that has shown to be successful in industrial IoT applications that employ mobile data 

networks (Navarro-Ortiz et al., 2018). Furthermore, large-scale applications require the use of an efficient time-

series database. Choosing the correct time-series storage solution depends on the enterprise and its existing 

infrastructure and a generic demand on the volume of data flow to be handled (Nasar & Kausar, 2019). As a result, 

we recommend looking into research that focuses on examining and comparing alternative time-series database 

solutions, such as Bader et al. (2017) and Fadhel et al. (2019), since this question goes well beyond the scope of 

this work. 

 

Conclusion 

 

In this work, we used a computer modeling technique to demonstrate a proof-of-concept for a telemetric data 

gathering system for a mining vehicle fleet. Because both vehicles and data collection can be simulated, this 

strategy might significantly minimize integration costs by minimizing vehicle downtime - which is especially 

crucial in the early stages of fleet management system integration. In the post-processing step of data analysis in 

a time-series database dashboard, this approach can also help uncover possible metrics that can be utilized for fleet 

monitoring and adjustments of these metrics. 

We further identified three components in the overall process of a monitoring system (see Fig. 6) and 

proposed various implementations for each of them — the data obtained from the simulation can be employed in 

the early stages of the creation of additional system components. The data transmission and reception components 

can then test against the requirements for data integrity during transmission using simulated data. This step could 

also incorporate various data corruption recovery options (for example, via a custom protocol) — this component 

could be implemented as a separate software unit in some circumstances. Finally, the ability of a human operator 

or an algorithm to make control decisions requires data storage and analysis. 

A sample modeling environment of a mining site was constructed using the SUMO transport traffic computer 

modeling system. This simulation was performed externally by a program using the TraCI API, which provides 

greater flexibility and the ability to obtain telemetry data from the model environment. After that, the telemetry 

was saved in an InfluxDB time-series database. We demonstrated that this approach might be utilized to model 

telemetry gathering scenarios that can aid in mining vehicle fleet management by presenting the test data received 

from the simulation. 

One topic not covered in this study is a way of providing feedback on a driver's decision-making process. 

Because it is extremely dependent on the company policy and implementation details of the telemetry collection 

system, it might theoretically be generated from telemetry data (i.e., which vehicles are being monitored). Potential 

for feedback based on retrieved metrics could improve operational efficiency (e.g., by picking more routes) or 

even worker safety (i.e., important event notification broadcast towards personnel with even data derived from the 

telemetry data automatically). 

In our future research, we would aim to add an evaluation framework for measuring metrics, which would 

aid in the decision-making process for fleet management duties. We would like to add a more robust set of vehicle 

metrics, such as vibration and humidity, to that framework, as well as more complex SUMO aspects of regions 

and extra objects that could aid vehicle tracking during simulation. Aside from those measures, another significant 

enhancement would be the addition of geographical position tracking in SUMO via the imitation of GPS tracking 

mentioned in previous sections utilizing the coordinate mapping approach. 
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