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Abstract 
In the present study, the new “casing-friendly” hardbanding alloy 
based on high-manganese steel reinforced with complex carbide 
particles was developed by combining thermodynamic modelling 
within the CALPHAD approach and first-principles calculations. The 
alloy, deposited by flux cored arc welding on a steel substrate, has a 
composite structure consisting of manganese-austenite with the 
ability to work hardening, fine (up to 5 µm) inclusions of the multi-
component carbide (Nb, Ti, Mo, V) and C the thin layers of (Mo,V)C 
at the austenite grain boundaries. The comparative wear tests carried 
out with commercially available hardfacing materials of the Fe-W-C 
and Fe-Cr-C systems showed that the proposed alloy has the best 
combination of properties preventing the wear of the drill casing, 
while its abrasion resistance, as well as wear resistance in sliding 
friction conditions by steel counter body, is close to hypereutectic 
high chromium alloys. The microhardness tests performed on 
deformed specimen areas after the friction tests show the presence of 
a significant hardness gradient in the range of 800-450 HV at a 
distance of about 300 µm when moving perpendicularly away from 
the zone of friction contact. During the microscopic observation of 
the layer deposited with the developed alloy and the interfaces 
between the deposit and the base steel, no cracks or pores 
delamination were detected, indicating a strong metallurgical 
bonding. The hardbanding process was performed for drill pipe joints 
with the worn Fe-based high chromium alloy hardbanding after 
exploitation, which allows the drill pipe to be re-used with the same 
durability. 
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Introduction 

 
Equipment used during drilling, production and transportation of oil and gas is operated in difficult 

conditions: at high temperatures and exposed to dynamic alternating loads in aggressive corrosive environments 
containing solid abrasive particles of rock. The introduction of advanced technologies for drilling wells and 
hydrocarbon production requires modern equipment and tools with high performance (Bazaluk et al., 2022; 
Bazaluk, Slabyi, et al., 2021; Dychkovskyi et al., 2020; Khouri et al., 2016; Kovanič et al., 2021; Kovanič et al., 
2021; Pukanská et al., 2017; Romanyshyn et al., 2020; Teodoriu & Bello, 2021). One of the main requirements 
for the technical condition of drilling, casing and pipe columns is the tightness and reliability of threaded 
connections during the life cycle (Kopei et al., 2019; Onysko et al., 2020) since leaks of petroleum products or 
natural gas cause a number of environmental problems (Mandryk et al., 2020). Threaded joints are typical thin-
walled constructions that operate under extreme conditions and are one of the drilling string’s weakest and most 
important components.  

A number of design, technological and operational methods are used to increase the life of threaded joints of 
the drill pipe string. When designing, special attention is paid to the rational selection of materials and coatings 
(Pashechko et al., 2017; Shihab et al., 2020; Shyrokov et al., 2009), investigation of corrosion processes (Saakiyan 
et al., 1987), wear measurements (Bembenek et al., 2020) and to the study of stress distribution in laminated bodies 
with functional coatings (Ropyak et al., 2020). In the article (Shats’kyi, 2015), the problems of annealing crack-
like defects are taken into account by applying non-contrasting hardfacing material.  

Technological methods ensure the achievement of manufacturing accuracy (Kopei et al., 2021; Medvid et al., 
2020; Pryhorovska & Ropyak, 2019; Peterka, J. et al., 2008) and the quality of the working surfaces of bolted 
joints (Kopei et al., 2020; Ropyak et al., 2021), including taking into account technological inheritance (Kusyi & 
Kuk, 2020) since errors in their manufacture lead to increased stresses assembled structures (Bazaluk, 
Velychkovych, et al., 2021, Vaclav, S. et al., 2007). With the help of various types of composite-type coatings, the 
life of the drill string is extended. The results of theoretical studies on the structure of metals (Levchuk et al., 2021; 
Melnick et al., 2020; Radchenko et al., 2020; Tatarenko & Radchenko, 2003) form the basis for the development 
of new materials and hardening technologies. 

Operational methods include a scientifically based choice of operation of tubular columns with drill pipe 
joints, taking into account force interaction ( Levchuk, 2017; Moisyshyn et al., 2012) and ensuring stable flushing 
of drilling tools in the borehole (Vytyaz et al., 2015). In order to create safe working conditions for drill string 
joints, damping and vibration protection devices are used (Shats’kyi et al., 2021), as well as rational methods for 
eliminating tool seizures in emergencies (Moisyshyn & Levchuk, 2016). 

In many cases, the threaded connection is the weakest link in the drill string, and very often, emergencies or 
accidents result from the failure of these threaded connections due to corrosion and mechanical wear. Therefore, 
arc hardfacing is promising, among other things, to increase the service life of drill pipe joints. 

Hardbanding is known as the process of applying wear-resistant alloys to drill pipe joints, primarily by arc 
welding, with the aim of increasing drill string service life. The drill pipe joints operating in contact with the casing 
can be represented as a friction couple working under severe sliding conditions complicated by the presence of an 
abrasive environment and impact loads. Such conditions become more complex in cases where heavy weight drill 
pipe (HWDP) is used (Murthy et al., 2011)  or the well has significant deviations from the vertical direction. This 
makes the selection of the hardbanding material a non-trivial task, as high abrasion resistance must be combined 
with providing low wear rates of the casing mating body, i.e. deposited layer should be “casing-friendly” (Zhang 
et al., 2020). Recent experience with the use of tungsten carbide-based hardbanding materials shows that, despite 
extremely high abrasion resistance, the use of such deposited coatings leads to significant wear of the casing. This 
is mainly caused by microstructural features of the deposited layer, where coarse-grained particles of tungsten 
carbide act as micro-cutters in relation to the drill string casing. As an alternative, “casing-friendly” hardbanding 
materials based on the Fe-Cr-C alloying system (Caltaru et al., 2020) are commercially available as products from 
Anrco Company’s of XT grades. Disadvantages of that type of coatings are typical for the Fe-based hypereutectic 
high-chromium alloys, including low impact resistance and coarse microstructure. Coatings of this type suffer 
from the same disadvantages as most Fe-based hypereutectic hardfacing alloys, including poor resistance to impact 
loads and a coarse carbide microstructure. A more advanced approach to developing hardbanding materials by 
using complex alloying with such strong carbide-forming elements as Ti, Nb and shown in (Haberer et al., 2014). 
The resulting deposited layers have a fine microstructure represented by uniformly distributed fine carbide 
particles within the low-carbon steel matrix. The abrasion wear resistance of Nb and Ti alloyed hardbanding 
exceeds the wear resistance of typical high chromium hardfacing by four times, although their hardness (53 HRC) 
is lower at 4-6 HRC. This suggests that hardness is not a key factor in ensuring wear resistance, but the formation 
of a composite matrix-reinforced surface layer fine structure under such conditions plays a crucial role. Such a 
structure can be achieved through the development of complex alloying systems that include high-alloyed steels 
and multi-component carbide phases (Segota et al., 2020).  Twinning-induced plasticity (TWIP) type austenitic 
steels are promising materials for use as the steel matrix phase for hardbanding coatings due to their high impact 
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wear resistance and good weldability in a wide range of welding modes. The transition metal carbides such as TiC, 
NbC, Mo2C, VC, etc., characterized by the formation of stable multi-component interstitial phases that crystallize 
in the form of dispersed inclusions with high microhardness (> 20 GPa), are promising as reinforcement. 

The aim of the present investigation is the development of a new hardbanding material in the form of flux 
cored wire for arc cladding that offers a composite structure of the surface layers consisting of a high manganese 
austenitic TWIP steel matrix reinforced with hard multi-component carbides. In particular, this study aimed at a 
thermodynamic analysis of the promising alloy systems using the CALPHAD technique to find the relationship 
between the alloy composition and the amounts of desired phases. 

 

Theoretical background 

 
The robust technique that enables the development of multiphase materials with the desired phase 

composition and properties is the CALPHAD (CALculation of PHAse Diagrams) approach, which is based on 
minimizing the total Gibbs free energy of the system by comparing the thermodynamic properties of its competing 
phases calculated according to the Compound Energy Formalism (CEF), suggested by M. Hillert (Hillert, 2001). 
For example, according to CEF, the Gibbs energy of manganese austenite and carbides of Ti, Nb, and V with the 
NaCl structure and other similar solid solutions can be represented by a two-sublattice model, with one sublattice 
filled with metal atoms, while the other is filled with carbon and vacancies. In this case, the Gibbs energy for a 
formula unit of a phase is described by the following equation: 
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where ��, �� and ��� are the site fractions of the i-th metal component, carbon and vacancies, respectively; �°
�:��
�  

and �°
�:	
�  are the Gibbs energies of the pure components and carbide phases with the given structure, respectively; 

c denotes the number of free lattice sites (tetrahedral and octahedral pores) with respect to one metal atom; ��� � 

is the magnetic contribution to the Gibbs energy and ��
�
� is the excess energy of mixing. For a system containing 

three metal components (�, � and  ), carbon and vacancies (!"), excess energy can be expressed as: 
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where: 
2 are the composition and temperature-dependent second and third-order interaction parameters (excess terms) 
that can be evaluated using the Redlich-Kister (RK) (Redlich & Kister, 1948) n-order polynomials: 
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The thermodynamic parameters for the substitution in Eq. (1) and Eq. (3), except for Mo-containing phases, 

were mainly taken from the (Hallstedt et al., 2017); other parameters were selected using the TDB-DB search 
system (Walle et al., 2018, Cernecky et al., 2015). The unknown important excess terms (2�,9:	

� ) that determine the 

solubility of Mn in carbide phases were obtained using a special Quasi-Random (SQS) structure approach (van de 
Walle & Asta, 2019) implemented in ATAT software (Walle & Ceder, 2002) in sqs2tdb module (Walle et al., 
2017). The required first-principles energy calculations were performed using the Quantum Espresso v.7.0 
software (Giannozzi et al., 2009) with GBRV v.1.5 set of ultrasoft pseudopotentials (Garrity et al., 2014). All the 
thermodynamic calculations were performed using the Thermo-Calc 2022a software (Andersson et al., 2002). 

 

Materials and Methods 

 
Specimens for experimental testing were prepared by hardfacing using the Flux-Cored Arc Welding (FCAW) 

technique with cored wires filled with alloy components. Commercially available powders of NbC, VC, Mo2C and 
TiC with irregular morphology and particle size ranging from 5 to 500 μm were used as starting carbide 
components, as shown in Fig. 1.  
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a b 

  
c d 

Fig. 1 The morphology of initial carbide powders 

 
Cemented carbide powders were mixed with ferromanganese (grade MNS17) and arc protection components 

(fluorite and rutile) in a drum mixer to obtain a homogeneous powder mixture, which was drawn into a low carbon 
steel sheath to obtain a cored wire with geometry parameters shown in Fig. 2. The flux-cored wire prepared as 
described above was coiled on a spool, whereby it could be used for hardbanding process by automatic arc welding. 
Deposition of the wear-resistant layers by FCAW was carried out on a plain carbon steel substrate with reversed 
polarity and a welding current of 160-180 A.   
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5 
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Fig. 2. The scheme of the cross-section of the cored wire 

 
To investigate the structure, properties and wear resistance, test specimens with dimensions of 10×20×40 mm 

were cut from hardfaced plate. Microstructure observations of deposited layers were performed by scanning 
electron microscopy (SEM) together with energy dispersive X-ray spectroscopy (EDS) using a ZEISS EVO 40 
XVP electron microscope. X-ray diffraction patterns for phase identification were performed using a DRON-3 
diffractometer (Kuric, et al., 2022). The macro hardness of the deposited layers was measured by the Rockwell 
method (scale A), and the microhardness with a Vickers pyramid indenter at a load of 1 N on the cross sections of 
the deposited layers. The abrasion wear resistance of the hardfaced layers was determined by ASTM G65-04 
standard test method for measuring abrasion using the dry sand/rubber wheel apparatus in the silica sand 
environment. To evaluate the ability of the hardbanding layer to ensure the durability of the case, the wear tests 
were performed according to the block (cylinder)-on-ring scheme using the modified SMTs-2 type tribometer. The 
loading of the friction couple was ensured by a system of two two-armed levers, as shown in Fig. 3. The rotation 
speed of the armoured disc was 300 rpm, while the load of the friction couple was set at 300 N, and the duration 
of each experiment was 30 min. In order to create friction conditions similar to the real drill pipe joint-casing pair, 
the water-based drilling fluid was used as the working environment. The wear rates of the test samples were 
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measured by weighing them before and after wear tests with an accuracy of 1 mg. To unify wear rates for materials 
with different densities, weight loss was converted to volume loss (Kuric, et al., 2020). T-590 grade high chromium 
hardfacing alloys and Lastek 210 grade tungsten carbide-based electrodes were selected to compare the properties 
of the developed material to commercially available hardbanding materials. 

 

 
Fig. 3. The general view of the hardbanding materials testing machine using block (cylinder) on ring scheme  

 
Results 

 

The thermodynamic parameters (2�,�6:	
� ) necessary for prediction of the phase composition of the hardbanding 

alloy assessed by ab initio calculations using the ATAT software are listed in Tab. 1. 
 

Tab. 1. The calculated thermodynamic parameters for the carbides 

Parameters (J/mole) Parameters (J/mole) Parameters (J/mole) Parameters (J/mole) 

28
:�,�6:	
� = +30048,4 28

?,�6:	
� = +9293,5 28

CD,�6:	
� = +49286,6 28

CD,�6:	
� = −8970,2 

2G
:�,�6:	
� = +47056,9 2G

?,�6:	
� = +22155,0 2G

CD,�6:	
� = +29600,7 2G

CD,�6:	
� = +2629,2 

2I
:�,�6:	
� = −83870,8 2I

?,�6:	
� = −71877,7 2I

CD,�6:	
� = −14537,4 2I

CD,�6:	
� = −11774,1 

 
As a starting point for the selection of the experimental hardbanding alloy composition, a pseudobinary section 

of the multi-component carbide-high manganese steel system was constructed (Fig. 4a). As can be seen from the 
figure, the stable phases in the most important areas are liquid high manganese austenite, MC-type complex 
carbides with face-centred lattices and (Mo,V)C (η-carbide). The optimal composition for the experimental 
hardbanding alloy was chosen for reasons of the existence of a broad two-phase region in which liquid and MC-
type carbide exist in equilibrium, which coincides with the eutectic point at 68 vol. % high manganese steel 
(Wiecek,  et al., 2019).   The solidification process of the experimental alloy (Fig. 4b) starts with the crystallization 
of the complex (Nb,Ti,Mo,V)C-carbide, which starts at ~ 2600 K and the amount of which increases up to 20 vol 
% at 1580 K. At this temperature, a eutectic reaction takes place, followed by an intense increase in the proportion 
of austenite up to 70% vol. % and partial decomposition of the carbide phase, resulting in the formation of the new 
MC-type carbide phase enriched in V and Mo (Kopas, et al., 2017). Further cooling in a solid state does not lead 
to phase composition changes up to 1000 K, where MC-type carbide becomes unstable and transforms into η-type 
carbide (Burduk, et al., 2019). After all phase transitions are completed and considering the stability of the austenite 
caused by the presence of a high amount of Mn, the resulting predicted structure consists of three main phases, 
namely manganese-austenite (~ 68 vol. %), multi-component (Nb,Ti,Mo,V)C-carbide (~ 18 vol. %) and η-type 
(Mo,V)C carbide (~ 14 vol. %). 
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a b 

Fig. 4. The calculated pseudobinary section of the hardbanding alloying system (a) and the temperature dependence of the phase 

composition for the selected hardbanding alloy 

 
According to the results of thermodynamic modelling, the selected composition of the experimental alloy was 

recalculated to the required flux components of the cored wire considering its morphology features (Fig. 1, a d) 
and the construction of the cored wire (with a filling coefficient of 0,6) at a given manufacturing process. As a 
result, the initial powder components were drawn into the steel sheath in the following weight amounts. %: 
ferromanganese – 15,6; TiC – 10,8; NbC – 19; VC – 11,4; Mo2C – 18,6 and the mixture of CaF2 and TiO2 the rest. 
The results of the microstructure investigations of the layer deposited by FCAW show the presence of all phases, 
predicted by the thermodynamic modelling (Kuric et al., 2021, Abramov et al., 2015). As can be seen from Fig. 5, 
the structure of the deposited layer consists mainly of a steel matrix represented by manganese austenite and 
uniformly distributed carbide grains with an average size of 5 µm. The total amount of the reinforcing carbide 
phases distributed within the steel matrix measured by image analysis is ~ 30 % by volume (Klarák et al., 2022). 
The cuboid-shaped inclusions, identified by EDS as multi-component (Nb,Ti,Mo,V)C carbides, are characterized 
by a core-rim structure that indicates the redistribution of the carbide-forming elements during solidification. The 
central areas of the grains are mainly enriched in Nb and Ti (Sapietova et al., 2011), while the peripheral areas 
contain significant amounts of Mo and V, although traces of all carbide elements are present throughout the grain 
area. The carbide phase identified as a η-carbide with the formula unit close to V0,35Mo0,15C0,5 precipitates at the 
austenite grain boundaries in the form of thin (up to 1 µm) discontinuous layers (Saga et al., 2020). The formation 
of the η-carbides at the austenite grain boundaries is caused by its solidification in the solid state (Fig. 4b) as a 
result of (V,Mo,Ti,Nb)C decomposition. The results of microstructural studies of the interface zone between the 
deposited layer and the base material (steel) show the smooth transition across the heat-affected zone, which is 
characterized by the absence of pores, cracks, delamination, and other similar defects. This indicates a strong 
metallurgical bond between the hardbanding and the base metal, making it possible to propose the experimental 
hardbanding alloy for industrial FCAW. 

 

  
a b 

Fig. 5. The microstructure of the hardbanding layer (a) and the interface between base steel material and deposited layer 
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The results of wear tests carried out on the machine shown in Fig. 3 show that WC-based hardbanding (Lastek 
210) has the highest wear resistance in relation to all tested materials, despite the wear of the cylinder (imitating 
casing), and the coefficient of friction has the highest values. Discs with hardbanding based on high-chromium 
alloy (T-590) have higher volume loss compared to WC-based hardbandings, but counter body wear and friction 
coefficient are lower (Abd Ali et al., 2021). The use of an experimental hard-banding alloy makes it possible to 
achieve almost the same wear resistance values as an alloy with a high chromium content, but the properties that 
ensure the preservation of the efficiency of the case (coefficient of friction and volume loss of the cylinder) are the 
highest among all tested hardbanding materials (Handrik et al., 2017). Abrasion wear resistance tests performed 
according to the ASTM G65-04 standard show that tested materials by descending relative wear values can be 
ranged as follows: Lastek 210 – 4, T-590 – 1 and experimental alloy – 0,8. 

 

 
Fig. 6. The results of the wear tests of different hardbanding materials 

 
The microstructural observations and microhardness measurements of the areas near the frictional contact 

zones of the disc with experimental hardbanding, carried out after the wear tests, show the presence of a 
microhardness gradient (Fig. 7) (Saga, Jakubovicova, 2014).  The microhardness of the underlying layers related 
to the contact area is in the range of 700-800 HV at a distance of up to ~ 75 µm, while at a distance of 75-200 µm 
the microhardness values are in the range of 600-700 HV, and for distances above 200 µm, the microhardness is 
within 450-550 HV, which is close to the values of hardbanding after FCAW without deformation treatment (Saga, 
Blatnicky et al., 2020). Such presence of the hardness gradient indicates the occurrence of structural changes in a 
steel matrix, which occur in typical high manganese austenitic steels with an Mn content of more than 13 wt. %. 

 

 
Fig. 7. The results of microhardness testing of experimental hardbanding  

 
Hardbanding of the joints of drill pipes, which were subjected to industrial tests, was performed using a 

hardbanding machine (Fig. 8, a), the units for automatic feeding of the flux-cored wire to the welding zone, the 
power supply and the mechanism for supporting and holding the drill pipes includes rotation. For hardbanding 
(Muravev et al., 2019, Bozek et al., 2016), a drill pipe with worn hardbanding (high-chromium alloy) was used 
(Kopas et al., 2017). The wear was determined by visual inspection prior to the reapplication of drilling pipes 
(Saga, Vasko, 2009). Due to the high compatibility of high manganese austenite with a wide range of alloys, 
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including high chromium, experimental alloy hardbanding was performed over the worn surfaces, allowing them 
to be re-used with approximately the same durability. 

  
a b 

Fig. 8. The general view of the hardbanding machine (a) and the recovered drill pipes (b)  

 
Discussion 

 
Due to its high metallurgical compatibility with certain steels and with the Fe-based alloys having high 

amounts of the alloying elements, the developed hardbanding alloy based on high-manganese austenite offers the 
possibility of re-using drill pipes with previously worn deposited layers. Such a combination of properties is 
achieved by using the complex alloy system, which makes it possible to solve the following tasks: prevention of 
the formation of a continuous cementite network at the austenite grain boundaries by replacing it with 
discontinuous layers of (Mo,V) C and creating the conditions for structure formation with matrix reinforcements. 
Complex (Nb,Ti,Mo,V) C carbides used as reinforcements have increased values of microhardness and crack 
resistance with respect to the corresponding monocarbides and precipitates in the form of fine grains preventing 
the intensive wear of the counter body (casing) during the friction. Complex (Nb,Ti,Mo,V) C carbides used as 
reinforcements have higher values of microhardness and crack resistance compared to the corresponding 
monocarbides and precipitate in the form of fine grains, which prevent intensive wear of the counter body (casing) 
during the drilling process, unlike WC-based hardbanding materials which cause extreme wear on the casing 
making their use very limited. In addition, the total amount of the complex carbides in the structure is ~ 30% by 
volume, which provides a sufficient level of abrasion wear resistance.  

One of the most important properties of the proposed hardbanding alloy is the ability for work hardening, 
which occurs in friction conditions in proportion to the applied load, increasing wear resistance in the most stressed 
areas without cracking in the deposited layer, as well as at interfaces between the base metal and hardbanding. 

The process of hardbanding by FCAW using the proposed alloy is simple, does not require highly skilled 
personnel and can be easily automated using standard equipment such as standard welding rectifiers that produce 
a welding current in the range of 160-250 A. 

  
Сonclusions 

 
Based on the thermodynamic modelling within the CALPHAD approach as implemented in the Thermo-Calc 

software used for the multi-component Fe-Mn-Nb-Ti-Mo-V-C system, the composition of the hardbanding alloy 
of high-manganese steel – refractory compound system proposed. In order to obtain the thermodynamic parameters 
determining the solid-state solubility of Mn in refractory carbides of MC-type, the first – principles calculations 
for the special quasi-random model structures were performed using the ATAT software. The experimental results 
of the microstructural observations of the experimental alloy and the phase composition predicted by 
thermodynamic modelling agree well, which allows for expanding the composition and temperature ranges for 
alloy development. 
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FCAW hardbanding with cored wire containing ferromanganese and powders of NbC, TiC, Mo2C and VC in 
equimolar proportions was tested against the commercially available Fe-W-C and Fe-Cr-C based hardfacing alloys 
and showed the best values of the properties preventing casing wear together with sufficient abrasion resistance. 
Despite the highest wear resistance of Fe-W-C alloys in both cases (abrasion and against the steel counter body), 
they cause extremely high wear to the casing, which makes them unsuitable for wide use.  

Based on the results, further research in materials development makes sense in the direction of developing 
materials based on manganese steel and multi-component carbides additionally alloyed with chromium and nickel 
to ensure the durability of coatings when working in aggressive environments. 
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