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Abstract

Analysis of linear features such as faults, valleys, interfluves, and
escarpments is a commonly used method in structural morphologic
and structural geologic research.

The aim of our study was to investigate the relationship between the
linear features by directional statistical analysis, and we also
examined the applicability of this method in a research area with a
complex geological structure. The study area was the Biikk
Mountains (NE Hungary) and its two catchment areas. The analysed
features (drainage network, lineaments and dominant aspect) were
derived from a DEM.

As a result of the research, we found that in the Sajo catchment, the
direction of lineaments does not coincide with the direction of the
valleys and structural elements, nor the dominant aspect, while in the
Tisza watershed, the orientation of the main structural features
notably differs from the direction of the other 3 feature sets.

In our opinion, this finding can be explained in three possible ways.
The first possibility is that the applied method does not provide
reliable results in a geologically complex area. The second
explanation is that regional structural processes may affect drainage
network evolution and the dominant aspect. The other explanation is
that there may have been unknown structural elements in the research
area, which affect the recent geomorphological settings and
processes.

The results draw attention to the fact that besides the unmapped
faults, there might be other factors affecting geomorphological
processes (e.g., resistance to denudation of different rock types,
microclimate), which have not been taken into account so far. The
research was based only on directional statistical examinations;
further geological and geophysical analyses are required to prove the
existence of these hypothetical morphotectonic features.
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Introduction

The GIS-based analysis of geomorphologic linear features (valleys, interfluves, escarpments) is a commonly
used method in the structural morphologic and structural geologic studies for identifying the effects of structural
elements (faults) on the evolution of recent surface landforms (Martz & Garbrecht, 1992; Ruszkiczay-Riidiger et
al., 2007; Jami et al., 2014; Pecsmany & Hegediis, 2021).

The study area is the Biikkk Mountains (NE Hungary, Fig. 1) and the small Uppony Hills in connection with it.
This is the most complicated area of Hungary with respect to its geological structure (Csontos, 1988, 1999; Less
et al., 2005; Petrik et al., 2014; Fodor et al., 2020). The area can be divided into two hydrological units, the Sajo-
and the Tisza catchment areas. We carried out the directional statistical analysis of linear elements on both the two
catchments and on the research area as a whole.

In our previous studies, we examined the southern part of the Biikk Mts. (Pecsmany, 2021; Pecsmany &
Hegediis, 2021; Pecsmany et al., 2021a). In this study, we extended the geomorphologic research to the entire
region to examine the applicability of the directional statistical analysis method on an area with complex geological
characteristics.

The aim of the study is to investigate the relationship between the valley network, lineaments, dominant aspect
and structural features. According to Less et al. (2005), the linear tectonic elements (fault, overthrust, the boundary
between different formations, etc.) do not have any connections with the significant valleys, although recent
geomorphological-geological studies do not exclude the possibility that the structure affected the evolution of the
drainage network (Szalai et al., 2002; Demeter & Szabo, 2009; Pecsmany & Vagé, 2020; Pecsmany et al., 2021b).
This research may provide additional information to resolve this discrepancy.
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Fig. 1. Location and topography of the research area (source: EUdem).

Materials and Methods

Geographical and geological settings

The Biikk Mountains represent the second-highest mountain range in Hungary, with a maximum height of
961 m (Fig. 1). The central part of the mountain is the homogeneous-looking Biikk Plateau, which is divided by
the Garadna Valley. Well-developed karst features, dolines, ranges of dolines, sinkholes, karstic gorges and large-
sized caves can be found on the limestone area of the plateau. The foothills of the plateau are dissected by deep
erosional valleys, the heads of which incise into the margin of the Biikk Plateau and trend radially outwards from
the centre. The directions of the valleys also determine the spatial arrangement of the crests and ridges (Hevesi,
1978, 2002a, 2002b; Less et al., 2005).

The research area can be divided into two main geological-structural units: the Biikk and the Uppony Unit
(Fig. 1). The most important structural element of the area is the fault system of the Darné Deformation Zone (Fig.
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2), which indicates the boundary between the two units, which moved to their recent geographic position by a
lateral displacement in the Oligocene — Early Miocene (Less et al., 2005; Pospisil et al., 2014; Gyalog, 2013).

The Palaeo-Mesozoic and partly the Palaeogene rocks that build up the units are different (Less et al., 2005;
Hass et al., 2013). In the Uppony Unit, the Palaeozoic formations are dominant, while the Biikk Unit is mostly
built up by Mesozoic carbonates. According to the reconstruction of the geological history, the oldest Palaeozoic
formations in the Northern-Biikk Mountains and mainly in the Uppony Hills are coarse siliciclastic sediments
(Csernelyvolgy and Ragyincsvolgy Sandstone Formation) represent the Late Ordovician Period. From the
Ordovician—Silurian boundary, siliceous shale and lydite started to be formed (Tapolcsany Formation). The
appearance of basic volcanites in succession indicates volcanic activity in the Middle Devonian; resulting
metabasaltic lava rocks with crinoideal limestones and ankeritic-sideritic carbonate rocks, which have been
affected by metasomatism (Strazsahegy Formation). The Devonian — Early Carboniferous sedimentation is
characterised by the evolution of carbonate platforms; the oldest platform is the thickly bedded, slightly crystalline
Uppony Limestone Formation. The metatuffitic limestone (cippolino) (Abod Limestone) with chlorite network
and with characteristic cross-foliated, thin-bedded structure is the product of pelagic sedimentation. Following the
basic volcanic activity that produced the Zsinnye Metabasalt Formation, platy or bedded, compact, flasered
limestone with metasomatised ankerite-siderite and dolomite (Dedevar Limestone Formation) deposited. The
Carboniferous limestones of Eleské Formation are embedded in calcareous clay shale, silty clay shale and fine-
grained sandstone matrix. The sedimentation of bedded, in some cases laminar limestone of Lazbérc Formation
was occasionally interrupted by the deposition of calcareous sandstone and sandy limestone rocks of the Derennek
Formation. The clayey and fine-grained sandy siltstones and sandstones of Zobdohegyese, Szilvasvarad, and
Malyinka Formations are covered by Permian sandstone and siltstone (Farkasnyak Sandstone Formation) and
black limestones (Nagyvisny6 Limestone Formation) (Less et al., 2005; Gyalog, 2013).

Contrary to the Uppony Hills, The Biikk Mountains structural unit is dominated by Mesozoic carbonates such
as Triassic limestone dissected by marl films (Gerennavar Limestone Formation); laminated limestone dissected
by sandstones, siltstones and shales (Ablakosk6volgy Formation); thick-bedded—massive limestone of Steinhalm
Limestone Formation; dolomite (Hamor Dolomite Formation), and limestone (Fehérké Limestone Formation,
Berva Limestone Formation, Biikkfennsik Limestone Formation, Kisfennsik Limestone Formation, Fels6tarkany
Limestone Formation) (Velledits & Péro, 1987; Csaszar et al., 1997; Haas et al., 2004, 2013; Velledits, 1998,
2000). Due to the Triassic volcanic activity, lava, agglomerate, tuff and ignimbrite dissect the carbonate layers:
metaandesite (Szentistvanhegy Metaandesite Formation), metarhyolite (Bagolyhegy Metarhyolite Formation) and
metabasalt (Szinva Metabasalt Formation, Létras Metabasalt Formation), (Szoldan, 1990; Less et al., 2005).

In the Jurassic limestone (Jomarci Limestone Formation), radiolarite (Banyahegy Radiolarite Formation),
turbidite (Lokvolgy Formation), shaley siltstone and limestone (Oldalvélgy Formation), Thickly-bedded silicified
sandstones (Vaskapu Sandstone Formation), limestone olistostromes in shaley siltstones (Monosbél Formation),
and basalt (Szarvask6 Basalt Formation) deposited (Less et al., 2005; Haas et al. 2011).

Mesozoic rocks that are younger than Late Jurassic are not known from the Biikk Mountains, except the
Upper Cretaceous Nekézseny Conglomerate Formation, which is made up of the thickly-bedded conglomerate
with sandstone and clay marl intercalations (Brezsnyanszky & Haas, 1984; Less et al., 2005).

The mountain range is surrounded by a large foothill area which is built up by terrestrial Eocene sandy gravel
(Kosd Formation), marine and limnic sediments (Szépvolgy Limestone Formation), Oligocene marl (Buda Marl
Formation), clay (Tard Clay Formation, Kiscell Clay Formation) and silty clay marl with poorly preserved mollusc
fauna (Eger Formation), (Baldi & Sztand, 2000a, 2000b; Less et al., 2005).

Most of the Neogene sediments are Miocene pyroclastites (Harsany Rhyolite Lapilli Tuff Formation, Tar
Dacite Lapilli Tuff Formation, Dubicsany Adesite Formation, Bogacs Dacite Lapilli Tuff Formation, Tihamér
Rhyolite Lapilli Tuff Formation) (Less etal., 2005, Lukacs et al., 2010, 2018, 2022), terrestrial, fluvial and shallow
marine clay, sand, gravel and fine-grained silt, clay and clay marl (Salgétarjan Lignite Formation, Egyhazasgerge
Formation, Garab Schlier Formation, Kozard Formation, Sajovolgy Formation, Zagyva Formation) (Less et al.,
2005).

The bulk of the overlying Quaternary deposits are fluvial-alluvial deposits, terrace sediments, proluvial debris
transported by short torrential flows, slope debris moved by solifluction, travertine and loess (Less et al., 2005;
Gyalog, 2013) (Fig. 2).

The structure of the Biikk Mountains can be characterised by folding, which has been modified by fault
patterns (Csontos, 1988, 1999; Less et al., 2005). The entire research area and its hydrological subunits (Sajo- and
Tisza catchments) are dissected by a fracture system (Fig. 2). However, due to the younger cover sediments, these
structural elements cannot be followed over longer distances. During a rifting phase (17.5-14.5 Ma) of the
Carpathian Basin, several NW-SE trending troughs and a few strike-slip related basins were developed in a NE—
SW extensional stress field. In the late Mid-Miocene, several roughly NE-SW trending depressions were formed,
such as the Vatta—Maklar Trough and the Fels6tarkany Basin. The research area is dominated by N-S to NE-SW
trending normal and/or strike-slip faults (Fig. 2), the latter are sub-parallel to the Mid-Hungarian Shear Zone (Tari,
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1988; Petrik et al., 2014). The geological structural elements were digitised from geological maps (Less et al.,
2004, 2005; Fodor et al., 2005; Németh, 2005; Petrik, 2016).
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Fig. 2. Geological map of structural elements of the research area and the rose diagram of the direction of faults 1: Quaternary sediments,
2: Miocene sediments, 3: Miocene volcanoclastics, 4: Oligocene sediments, 5: Eocene sediments, 6: Mesozoic sediments, 7: Mesozoic
metavolcanics, 8: Palaeozoic sediments and metavolcanics (Gyalog, 2013), 9: major faults (Less et al., 2004, 2005; Fodor et al. 2005;

Németh, 2005; Petrik, 2016).

Derivation of drainage network

In our research, we used a derived drainage network which was created from a 25 m spatial resolution digital
elevation model (DEM). This network is a theoretical drainage network, which - according to our previous research
- highly correlates to the valleys of real streams (Pecsmany, 2021; Pecsmany et al., 2021a).

The steps of the process were done by ArcGIS Pro software, applying the “Fill”, “Flow Direction”, and “Flow
Accumulation” tools. Only those DEM pixels were considered as parts of drainage, which have a critical source
area of a minimum of 1 km2. Then we vectorised these pixels; the resulting polyline network draws the drainage
network. The stream sections’ Strahler-orders (Strahler, 1957) were also defined by the ArcGIS “Stream Order”
tool (Fig. 3).

Since our goal was to examine and compare the orientation of the stream network to the structural elements’
direction, the smaller oscillations of short valley sections were smoothed by the Demeter & Szabé (2009) method,
applying the ArcGIS “Generalization” tool. Using the breakpoints (vertices) of the streams, we split each polyline
into straight-line segments. Based on the coordinates of vertices, we calculated the length and direction of the
straight stream segments by applying the RockWorks 16 software. The direction frequencies by length were plotted
on rose diagrams with 10-degree scale intervals using RockWorks 16 “Creating Rose Diagrams from Endpoint
Data” tool. The rose diagrams were analysed by traditional visual interpreting methods (Ricchetti & Palombella,
2007; Romshoo et al., 2012; Radaideh et al., 2016; Petrik & Jordan, 2017; Gioia et al., 2018; Suha et al., 2021).
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Fig. 3. Derived drainage network of the research area.

Mapping of lineament network

Lineaments are linear morphologic features on the surface, such as faults, valleys, escarpments, and cuestas
(Twiss & Moores, 2002). Visual interpretation of satellite images (Leech et al., 2003; Unger & Timar, 2005; Al-
Rawashdeh et al., 2006), digital elevation models and their derivatives (Radaideh et al., 2016; Petrik & Jordan,
2017; Suha et al., 2021), or their combined use (Chaabouni et al., 2012; Akinluyi et al., 2018; Mukhopadhyay et
al., 2019) is a usually applied method for identifying lineament networks, although it is a subjective technique.
Striving for objectivity, in our research, we used the method published by Al-Obeidat et al. (2016) for mapping
lineaments: a Canny edge detection algorithm was applied on a DEM derivative hillshade image. A
multidirectional hillshade was created in ArcGIS Pro 2.8 software, and then the edge detection algorithm was run
on it in MatLab R2017b software. The result raster was vectorised in ArcGIS Pro. Then the polylines were
smoothed using ArcGIS “Generalization” tool. We examined only the lineaments longer than 500 m (Fig. 4)
because these are more likely associated with fault lines than shorter ones (Pecsmany et al., 2021a). Direction
frequencies by the length of lineaments were plotted on rose diagrams with 10-degree scale intervals using
RockWorks 16.
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Fig. 4. Lineament network of the research area.

Determination of the dominant aspect

The direction of slopes (aspect) of a given area determines the general direction of waterflows. Both
subdivisions of the research area, namely the Tisza and Sajo catchments, are highly dissected. Therefore, the
single-aspect tool cannot provide reliable results for the dominant aspect. In order to derive that, we fitted a 1%
order trend (ArcGIS Pro - trend interpolation tool) on the DEM’s local maximum elevations. The local maximum
points were identified by applying the Telbisz (2009) method. Then the slope direction of the trend was calculated
as the dominant aspect.

Results

The directional statistical analysis of structural elements, drainage (valley) network, lineaments and dominant
aspect of the entire research area and its two catchments gave the following results:

- The faults on the entire area and on both its catchments are striking in the NE-SW direction, although the
variation is bigger in the case of the Tisza catchment area than in the Sajo’s. There is a slight secondary
direction to the NNW-SSE in the Tisza catchment (Fig. 2).

- In the Sajo catchment area, the valley network has no main direction, although there are 3 equally
frequent directions to the NW-SE, NE-SW and E-W. The NW-SE direction originates from the 1 order
valleys, the NE-SW direction is specific for the 2", 3" and 4" order valleys, while the E-W direction
belongs to the 3" order valleys (Fig. 5).

- Inthe case of Tisza, the dominant direction is NNW-SSE in the entire catchment and in all valley orders.

- Analysing the entire research area, the main direction is similar to the Tisza catchment, NNE-SSW.
However, in the case of 4™ order valleys, there are two equally frequent secondary directions: N-S and
NE-SW (Fig. 5).
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- The main direction of lineaments is NNW-SSE on the entire area and on both subunits, although the
divergence is bigger in the Sajo catchment, and there is an N-S secondary direction as well (Fig. 6).
- The dominant aspect of the research area is SE (143,12°). In the Saj6 catchment, it is NE (37,72°), and

in the Tisza catchment, it is SE (151,31°).
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Fig. 6. Lineament network directions of the Biikk area.

Conclusion

In highly tectonised areas, the analysis of drainage characteristics and the linear features’ effect on the
evolution of landforms is a well-known method to identify faults (e.g. Centamore et al., 1996; Al-Rawashdeh et
al., 2006; Ruszkiczay-Riidiger et al., 2007, 2009; Siddiqui et al., 2015; Radaideh et al., 2016). In Fig. 7, it can be
seen that in the Saj6 catchment, the direction of lineaments does not coincide with the direction of the valleys and
the structural elements, nor the dominant aspect. In the Tisza subunit, the orientation of the main structural features
notably differs from the direction of the other 3 factors.
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This result can be explained in three possible ways: The first explanation is that the applied method does not
provide reliable results on areas with complex geological settings. The second explanation is that the regional
structural processes may affect the evolution of the drainage network and the dominant aspect. The third
explanation is that there may have been unknown structural elements that can affect the recent geomorphological
settings and processes in the research area. The results of recent studies (Szalai et al., 2002; Demeter & Szabo,
2009; Pecsmany & Vago, 2020; Pecsmany et al., 2021b) assume that there may have been diagonal and cross
faults, striking perpendicular to the main faults. In our opinion, our results support those findings. In the Saj6 area,
the NNW-SEE direction of lineaments may be caused by unmapped geological structures, while in the Tisza area,
the direction of main valleys may be related to these faults. Our results draw attention to the fact that there might
be other factors (e.g., resistance to denudation of different rock types, microclimate) that affect the
geomorphological processes, which have not been taken into account so far. Our recent research was based only
on directional statistical examinations; further geological and geophysical analyses are required to prove the
existence of these hypothetical morphotectonic features.
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