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Abstract 

Point clouds are now a standard way of describing objects in many 

engineering disciplines, whether they are man-made objects such as 

structures, buildings, or various types of structures. Commonly used 

methods of acquiring such data include ground, UAV, or even aerial 

photogrammetry, followed by terrestrial, UAV, and aerial scanning.  

After measurement (by the scanner) or calculation (from 

photogrammetry), the point cloud goes through extensive processing 

that essentially transforms the unordered mass of points into a usable 

data set. One of the important steps is removing points representing 

obstructing objects and features, including vegetation in particular. 

Here, many filtering methods based on different principles are 

available and suitable for application to different scenes.  

This paper presents a new method of filtering point clouds based on 

the visible spectrum color principle using vegetation indexes 

determined from RGB system colors only. Since each sensor has to 

some extent, an individual interpretation of the colors, it cannot be 

assumed to determine specific boundaries of what is and is no longer 

vegetation. Therefore, it was proposed to use means clustering to 

simplify the operator's work. The method was also designed in such 

a way that the entire evaluation could be implemented in the freely 

available CloudCompare software.  

The procedure was tested on three different sites with different terrain 

and vegetation characteristics showing, which demonstrated the 

applicability of this method to data where the color information 

(green) uniquely identifies vegetation. The selected vegetation filters 

ExG, ExR, ExB, and ExGr were tested, where ExG was the best. K-

means clustering helps an operator to distinguish more easily 

between vegetation and the rest of the point cloud without 

compromising the quality of the result. The method is practically 

implementable using the freely downloadable and usable 

CloudCompare software. 
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Introduction 

 

Point clouds are now a standard way of describing objects in many engineering disciplines, whether they are 

man-made objects such as structures, buildings, or various types of structures (e. g. bridges (Erdélyi, Kopáčik, & 

Kyrinovič, 2020), buildings (Kovanič et al, 2021)). Commonly used methods of acquiring such data include 

ground (Křemen, 2020), UAV (Rybansky, 2022) (Urban, Štroner, & Kuric, 2020) (Blišťan et al., 2019), or even 

aerial photogrammetry (Blišťan et al., 2016) (here the Structure from Motion (SfM) method is absolutely 

predominant), followed by terrestrial (Koska & Křemen, 2013), UAV (Jon, Koska & Pospíšil, 2013) and aerial 

scanning (Kovanič et al., 2021). 

The point cloud, after measurement (by the scanner) or calculation (from photogrammetry), goes through 

processing (Pavelka et al., 2019) that essentially transforms the unordered mass of points into a usable data set. 

One of the important steps is removing points representing obstructing objects and features, including vegetation 

in particular (Braun et al., 2022). Here, many filtering methods based on different principles are available and 

suitable for application to different scenes. Filters can be divided into geometric (slope-based (Vosselman, 2000) 

(Sithole, 2001) (Susaki, 2012), interpolation-based (Kraus & Pfeifer, 1998) (Axelsson, 2000) (Kobler et al., 2007), 

morphological (Keqi Zhang et al., 2003) (Pingel, Clarke, & McBride, 2013) (Li, 2013), statistical (Bartels & Wei, 

2006)), segmentation-based (Im, Jensen, & Hodgson, 2008) (Zhang, Lin, & Ning, 2013) (Tovari & Pfeifer, 2005) 

(Vosselman, Coenen, & Rottensteiner, 2017), machine learning-based (Rizaldy et. el, 2018) (Zhang, Hu, Dai, & 

Qu, 2020), and hybrid and other filters (e.g., (Buján, Cordero, & Miranda, 2020), (Zhang et al., 2016). These filters 

are suitable for point clouds where the points representing necessary objects are distinguishable from unnecessary 

ones through spatially manifested properties, be it a difference in slope, data structure, or something else. 

Furthermore, most of these filters were developed in response to the processing of point clouds taken by airborne 

lidars, whose data are relatively low in detail and are mainly intended to obtain a digital terrain model (Moudrý et 

al., 2013) (Moravec et al., 2017) (Blistanova et al 2015). It is only recently that filters specialized (or at least 

suitable) for technical applications where the clouds are dense, i.e., with resolution in the units of centimeters (or 

better) and with similar accuracy (Štroner, Urban & Línková, 2022) (Štroner, Urban, Lidmila, Kolář, & Křemen, 

2021) have been developed. 

However, all of these filters are only functional under the basic assumption - necessary and obstructing points 

can only be separated based on the spatial arrangement. If this is not the case, they are completely powerless. 

Examples include dense low shrubbery in rugged areas where earthworks are carried out, on rock faces, in opencast 

mines, etc. The spatial granularity of these stands is similar to or even lower than that of the terrain. They do not 

stand out from it in any way and are, therefore, geometrically indistinguishable. Nevertheless, the processor can 

distinguish them at a glance on the basis of color. The way color is commonly expressed through the Red, Green, 

and Blue (RGB) components does not allow the selection of what is green as a human would, and so some other 

expression must be used. Vegetation indexes that also use invisible spectra of electromagnetic radiation (such as 

NDVI) can be used to express the amount of green, but this requires special sensors (and can only be used for 

photogrammetric methods). Thus, either other color expression systems (e.g., HSI - Hue, Saturation, Intensity) or 

vegetation indexes using only visible radiation captured by RGB sensors (which is possible for all the technologies 

described) are offered. 

This paper presents a new method of filtering point clouds based on the visible spectrum color principle using 

vegetation indexes determined from RGB system colors only. Since each sensor has to some extent, an individual 

interpretation of the colors, it cannot be assumed to determine specific boundaries of what is and is no longer 

vegetation. Therefore, a simple point cloud color segmentation system (using the k-means clustering algorithm, 

see https://en.wikipedia.org/wiki/K-means_clustering) was proposed to make it easier for the operator to determine 

the boundary between vegetation and the rest of the surfaces. This converts a virtually continuous value domain 

into a value domain with only discrete values. The testing also includes determining the effect of the number of 

color clusters on the quality of the result. So far, the method aims to identify points with green color. Although 

vegetation is not only green but also woody but in terms of point cloud filtering, these features are generally much 

fewer. 

 

Materials and Methods 

 

The proposed method is based on the simple assumption that instead of the operator manually removing the 

vegetation points based on the subjective evaluation according to the color he sees on the screen, according to a 

clear mathematical rule, a score number is calculated for each cloud point, based on which it is decided whether 

the point is removed or not. 

The key is, of course, the selection of a suitable vegetation index, of which there is a plethora in the literature, 

and they are aimed at solving different tasks. Thus, the idea of using vegetation indexes is not new. However, they 

have always been applied to image data so far, especially in applications of greenness assessment in image data 
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for agricultural purposes, e.g., in (Änäkkälä, Lajunen, Hakojärvi, & Alakukku, 2022) or in (Guijarro et al., 2011) 

and  (D. M. Woebbecke, G. E. Meyer, K. Von Bargen, & D. A. Mortensen, 1995). 

Proposed filtration procedure 

The proposed method consists of a few simple steps: 

 

1. Calculation of the vegetation index (VI) for each point of the cloud. 

2. Limiting the range of the vegetation index for the cloud so that outliers do not unnecessarily increase the 

range.  

3. Segmenting the cloud VI into k groups.  

4. Choosing a boundary for vegetation identification.  

5. Vegetation filtering. 

 

The calculation can be performed in mathematical software such as Matlab or Scilab. However, the procedure 

has been developed for an easy practical application that is entirely executable in the CloudCompare software 

environment; the current version 2.12.4 was used for testing. After the point cloud is loaded into the program, it is 

necessary to export the colors of the points into scalar fields named R, G, and B (using the Edit/Colors/Convert to 

scalar field function). The specific vegetation index value is then calculated using the Edit/Scalar fields/ 

Arithmetics function. The histogram (Edit/Scalar fields/Show histogram) can be used to find the appropriate range 

boundaries. A boundary corresponding to a cumulative probability of about 0.1% on the left side and the same for 

the right side can be recommended. These selected values are set as outliers in the SF display params field for the 

saturation boundaries (bottom part). Then you need to set the color gamut to Grey and import the scalar field thus 

displayed into color (Edit/Scalar Fields/Convert to RGB). 

Then the function Plugins/Calorimetric segmenter/Kmeans Clustering is used, where the number of resulting 

colors k and the maximum number of iterations are set (more does not matter, the converging calculation usually 

terminates much earlier than the defined value, i.e., it is recommended to set 100). The function adjusts the colors, 

which are then exported again to the scalar field, just the composite channel ((R+B+G)/3). This scalar field then 

contains the segmented colors at a maximum of k. The original true colors are returned to the point cloud using 

the Edit/Colors/From Scalar fields function (from the originally exported R, G, and B channels). You need to set 

a maximum range for each R, G, and B channel and a fixed value of 255 for the Alpha channel. 

 

Data for testing 

To test the method, its setup, and the vegetation indexes used, the following data were selected to correspond 

to the intended use, i.e., to such point clouds where vegetation is not part of the search surface, such as rock 

formations, mining areas, earthwork, and landscaping works. Data 1 (Fig. 1) is from a stone rubble field in the 

High Tatras; the selected cloud has an area of 4800 m2 and consists of 1 554 452 points.  

 

 
Fig. 1.  Data 1 point cloud – a stone field with surrounding low alpine vegetation 

 

The average density is 264 points per m2, i.e., the distance between adjacent points is about 0.06 m. 
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Data 2 (Fig. 2) is from a vertical stone wall of a yellow-brown hue, a railway cut, where there are clumps of 

grass to be removed. The cloud has 1,594,685 points, and the area of the rock is 242 m2. The average density is 

3550 points per m2, i.e., the distance between adjacent points is about 0.02 m. 

 

 
Fig. 2.  Data 2 point cloud – almost vertical rock wall with small clumps of vegetation 

 

Data 3 is from an area of ground works where dense ground shrubs have grown up, preventing detection of 

the ground surface by non-contact methods. The cloud has 1 688 681 points and covers an area of 3 383 m2. The 

average density is 480 points per m2, i.e., the distance between adjacent points is about 0.05 m. 

 

 
Fig. 3.  Data 3 point cloud – an area of landscaping with vegetation - dense bushes 

 

Vegetation indexes tested 

Vegetation indexes are given in Tab. 1. Here R, G, and B are the point colors in the range 0 - 255, and r, g, 

and b are the normalized color values: 

 

r = R/(R+G+B)         (1) 

g = G/(R+G+B)         (2) 

b = B/(R+G+B)         (3) 

 
Tab. 1.  Summary of vegetation indexes used 

Name Abbreviation Formula Reference 

Excess Green ExG ExG = 2g – r – b (Woebbecke, 1995) 

Excess Red ExR ExR = 1.4r – g (Meyer, 1999) 

Excess Blue ExB ExB = 1.4b – g (Guijarro, 2011) 

Excess Green ExGr ExGr = ExG – ExR (Camargo Neto, 2004) 
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Testing methodology 

Each data was filtered using each of the indexes listed (ExG, ExR, ExB, ExGr) with the data separated 

manually without adjustment and further with K-means segmentation into 2, 3, 4, 5, 10, 15, 20, 50, and 100 steps. 

For each data, an etalon was created by a human operator against which the variants were evaluated. 

The first characteristic used is the type I error and type II error of vegetation point identification. Type I error 

refers to points that should have been identified as green and mistakenly were not (sometimes also called false 

negative rate). Type II error then indicates points that were incorrectly identified as green (false positive rate). 

Both errors are expressed as percentages in this paper, where 100% is the number of vegetation points according 

to the etalon. In addition, established binary classification quality characteristics were calculated, namely the well-

known f-score (according to (Fawcett, 2006)), accuracy, and balanced accuracy (according to 

https://en.wikipedia.org/wiki/Evaluation_of_binary_classifiers, 1.10.2022), the calculation is shown in Tab. 2. 

 
Tab. 2 Overview of quality characteristics used 

Characteristics Abbreviation Calculation 

Type I error I I = FN/(TP+FN) 

Type II error II II = FP/(TP+FN) 

Total error TE TE = I + II 

F-score FS FS = 2TP/(2TP+FP+FN) 

Accuracy AC AC = (TP+TN)/(TP+TN+FP+FN) 

Balanced accuracy BA BA = (TPR+TNR)/2; TPR = TP/(TP+FN); TNR = TN/(TN+FP) 

 

Since this is a binary classification, the data are divided into two basic parts - positive P and negative N (in 

the case of cloud classification, these are the sets of vegetation points and other points). Furthermore, a successful 

classification is denoted as true (T) and an unsuccessful one as false (F). Thus, e.g., TP denotes true positive; in 

the case of the point cloud classification reported here, these are points correctly classified as vegetation, then, 

e.g., FP denotes false positive, i.e., points incorrectly identified as vegetation points, TN points correctly classified 

as other points, etc. 

 

Results 

 

The results of the testing are shown in the following tables. In particular, the TE variable - the total proportion 

of misidentified points - can be used for the simplest interpretation. Furthermore, the quality is also well expressed 

by BA - the quality of the identification of both vegetation and non-vegetation points. 

Data 1 represents a scene consisting of grey stones, grass, dirt, and dwarf mountain pine trees. All the 

characteristics of the quality of the greenness identification show that of the vegetation indexes tested, ExG appears 

to be the most suitable, with ExGr as the second best, then ExB, and visibly the worst ExR. When evaluating the 

effect of the number of clusters k, it is clear that except for the minimum values (2-4), the results do not differ 

much. It may seem illogical that when calculating without simplifying to k clusters (k = full), the results are worse 

in some cases. This is because the subtle value shift is difficult for the operator to evaluate, manifesting itself 

differently at different points in the cloud. 

It must also be taken into consideration that the etalon created for the assessment is very difficult to create, 

the boundary of the green color indicating vegetation is not sharp, the data comes from sensors with limited 

resolution, and of course, each operator has a different perception of color, and the different color display on 

different screens contributes to the uncertainty of the result. 

From the point of view of the interpretation of the results, it is worth adding that out of about 1.5 million 

points, about 420 thousand points are identified as vegetation. 

Data 2 has a different color background; the rock is mostly yellow-brown. The vegetation identification here 

fails dramatically with vegetation indexes ExR and ExB, where the sum of misidentified TE points reaches higher 

tens of percent. Again, ExG performs very well here, while ExGr is significantly worse. Out of about 1.5 million 

points, only about 54 thousand points are identified as vegetation. Therefore, the percentages are significantly 

different in some characteristics. 

The results for Data 3 replicate the previous results, with ExB and ExR achieving about the same results, 

ExGr being visibly better and ExG the best.  Of the approx. 1.4 million points, approx. 254 thousand points are 

identified as vegetation ones. 
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Tab. 1 Testing results – Data 1 

V. Index k I [%] II [%] TE [%] f-score [%] BA [%] ACC [%] 

ExG 2 20.28 0.00 20.28 88.72 89.86 94.52 

 3 0.07 8.63 8.70 95.83 98.37 97.65 

 4 23.16 0.00 23.16 86.91 88.42 93.74 

 5 0.37 0.40 0.77 99.61 99.74 99.79 

 10 3.27 0.26 3.52 98.21 98.32 99.05 

 15 0.37 0.40 0.77 99.61 99.74 99.79 

 20 5.10 0.19 5.29 97.29 97.42 98.57 

 50 0.09 4.70 4.78 97.66 99.09 98.71 

 100 0.00 1.95 1.95 99.03 99.64 99.47 

 Full 0.09 5.12 5.20 97.46 99.01 98.59 

ExR 2 27.21 0.50 27.71 84.01 86.30 92.51 

 3 34.28 2.28 36.55 78.24 82.44 90.11 

 4 22.35 9.18 31.53 83.12 87.12 91.47 

 5 32.41 2.77 35.18 79.35 83.28 90.49 

 10 24.83 6.76 31.59 82.64 86.33 91.46 

 15 21.78 10.12 31.90 83.06 87.23 91.37 

 20 22.35 9.18 31.53 83.12 87.12 91.47 

 50 20.99 11.17 32.17 83.09 87.43 91.30 

 100 20.99 11.17 32.17 83.09 87.43 91.30 

 Full 20.89 11.32 32.21 83.08 87.46 91.29 

ExB 2 11.64 7.40 19.03 90.28 92.81 94.85 

 3 2.48 32.12 34.59 84.94 92.81 90.65 

 4 20.14 2.46 22.60 87.60 89.47 93.89 

 5 5.39 19.00 24.39 88.58 93.78 93.41 

 10 8.71 11.18 19.89 90.18 93.57 94.62 

 15 20.14 2.46 22.60 87.60 89.47 93.89 

 20 9.79 9.54 19.33 90.32 93.34 94.77 

 50 16.79 3.77 20.56 89.00 90.91 94.44 

 100 8.71 11.18 19.89 90.18 93.57 94.62 

 Full 17.64 3.39 21.03 88.68 90.55 94.31 

ExGr 2 22.82 0.05 22.87 87.10 88.58 93.82 

 3 2.64 10.70 13.34 93.59 96.70 96.39 

 4 18.35 0.15 18.50 89.82 90.80 95.00 

 5 1.57 15.90 17.47 91.85 96.27 95.28 

 10 5.82 4.24 10.06 94.93 96.31 97.28 

 15 1.88 13.92 15.80 92.55 96.48 95.73 

 20 5.82 4.24 10.06 94.93 96.31 97.28 

 50 1.88 13.92 15.80 92.55 96.48 95.73 

 100 5.22 5.04 10.27 94.86 96.45 97.22 

 Full 6.31 3.76 10.07 94.90 96.15 97.28 
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Tab. 4 Testing results – Data 2 

V. Index k I [%] II [%] TE [%] f-score [%] BA [%] ACC [%] 

ExG 2 8.42 0.60 9.03 95.30 95.78 99.69 

 3 15.99 0.33 16.33 91.14 92.00 99.45 

 4 21.29 0.23 21.52 87.97 89.35 99.27 

 5 23.73 0.20 23.93 86.44 88.13 99.19 

 10 0.00 9.26 9.26 95.57 99.84 99.69 

 15 0.00 32.13 32.13 86.16 99.44 98.91 

 20 26.11 0.16 26.27 84.91 86.94 99.11 

 50 7.38 0.64 8.02 95.85 96.30 99.73 

 100 0.00 7.25 7.25 96.50 99.87 99.75 

 Full 0.91 1.01 1.93 99.04 99.53 99.93 

ExR 2 0.28 663.58 663.86 23.10 88.20 77.46 

 3 16.97 41.78 58.75 73.87 90.78 98.01 

 4 37.05 8.44 45.50 73.45 81.33 98.46 

 5 2.89 203.33 206.22 48.50 94.98 93.00 

 10 7.10 104.34 111.44 62.51 94.62 96.22 

 15 12.94 58.48 71.42 70.91 92.50 97.58 

 20 14.84 49.48 64.32 72.59 91.71 97.82 

 50 26.96 19.34 46.30 75.93 86.18 98.43 

 100 16.97 41.78 58.75 73.87 90.78 98.01 

 Full 59.25 0.88 60.13 57.55 70.36 97.96 

ExB 2 9.21 1361.53 1370.75 11.70 71.47 53.46 

 3 23.71 609.87 633.59 19.41 77.43 78.49 

 4 41.43 223.58 265.02 30.65 75.35 91.00 

 5 45.51 174.49 220.00 33.13 74.18 92.53 

 10 83.17 0.00 83.17 28.81 58.42 97.18 

 15 58.77 56.37 115.15 41.73 69.62 96.09 

 20 74.61 0.02 74.63 40.49 62.70 97.47 

 50 74.61 0.02 74.63 40.49 62.70 97.47 

 100 73.85 0.02 73.87 41.45 63.07 97.49 

 Full 69.94 0.12 70.06 46.19 65.03 97.62 

ExGr 2 19.01 0.58 19.59 89.21 90.49 99.33 

 3 27.73 0.14 27.87 83.84 86.13 99.05 

 4 31.93 0.08 32.01 80.96 84.03 98.91 

 5 31.93 0.08 32.01 80.96 84.03 98.91 

 10 9.90 3.98 13.88 92.85 94.98 99.53 

 15 12.60 2.24 14.84 92.17 93.66 99.50 

 20 15.68 1.16 16.84 90.92 92.14 99.43 

 50 4.25 15.19 19.44 90.78 97.61 99.34 

 100 6.33 8.83 15.17 92.51 96.68 99.48 

 Full 13.75 1.79 15.54 91.74 93.09 99.47 
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Tab. 5 Testing results – Data 3 

V. Index k I [%] II [%] TE [%] f-score [%] BA [%] ACC [%] 

ExG 2 20.16 0.00 20.16 88.79 89.92 96.96 

 3 5.74 0.00 5.75 97.04 97.13 99.13 

 4 0.00 5.92 5.92 97.12 99.47 99.11 

 5 0.00 0.77 0.77 99.61 99.93 99.88 

 10 0.00 12.87 12.87 93.96 98.86 98.06 

 15 7.39 0.00 7.39 96.16 96.31 98.89 

 20 0.00 0.03 0.03 99.98 100.00 100.00 

 50 0.00 2.37 2.37 98.83 99.79 99.64 

 100 0.00 3.19 3.19 98.43 99.72 99.52 

 Full 1.50 0.02 1.51 99.24 99.25 99.77 

ExR 2 21.57 0.01 21.58 87.91 89.21 96.74 

 3 27.29 0.00 27.29 84.20 86.35 95.88 

 4 14.84 0.09 14.94 91.94 92.57 97.75 

 5 18.66 0.02 18.68 89.70 90.67 97.18 

 10 12.23 0.29 12.52 93.34 93.86 98.11 

 15 5.09 3.40 8.49 95.72 97.15 98.72 

 20 3.37 9.23 12.60 93.88 97.50 98.10 

 50 14.19 0.12 14.31 92.30 92.89 97.84 

 100 4.78 4.39 9.18 95.40 97.22 98.62 

 Full 10.03 0.60 10.63 94.42 94.93 98.40 

ExB 2 22.71 0.08 22.79 87.15 88.64 96.56 

 3 27.95 0.03 27.98 83.74 86.02 95.78 

 4 16.81 0.26 17.07 90.69 91.57 97.42 

 5 9.53 1.74 11.27 94.14 95.08 98.30 

 10 8.75 2.15 10.90 94.36 95.43 98.36 

 15 5.81 5.40 11.22 94.38 96.61 98.31 

 20 16.81 0.26 17.07 90.69 91.57 97.42 

 50 7.99 2.70 10.69 94.51 95.76 98.39 

 100 4.43 8.53 12.96 93.65 97.03 98.04 

 Full 6.13 4.80 10.93 94.50 96.51 98.35 

ExGr 2 20.45 0.00 20.45 88.61 89.77 96.92 

 3 23.60 0.00 23.60 86.62 88.20 96.44 

 4 8.88 0.00 8.88 95.35 95.56 98.66 

 5 9.45 0.00 9.45 95.04 95.28 98.57 

 10 2.28 0.67 2.94 98.52 98.80 99.56 

 15 0.33 5.88 6.21 96.98 99.32 99.06 

 20 3.97 0.15 4.12 97.90 98.00 99.38 

 50 0.69 3.27 3.96 98.05 99.37 99.40 

 100 5.89 0.02 5.91 96.96 97.05 99.11 

 Full 4.19 0.12 4.31 97.80 97.90 99.35 

 

 

Discussion 

 

Filtering vegetation in point clouds using colors or vegetation indexes is a specific technique that is functional 

according to the above experimental results. However, as with any other procedure, the prerequisite for their 

functionality is data suitable for their application. This must be respected, and in our opinion, it cannot be expected 

that this technique can replace, e.g., geometric filters (Anders, Valente, Masselink, & Keesstra, 2019). In fact, it 

is only filtering the points whose color contains a green tint. Anyway, based on the experiments, it is clear that 

even with such a narrow selection of vegetation indexes, different features can be detected. In Fig. 4, Data 1 is 

shown in its original colors (original) and colored by the individual vegetation indexes used. 

The main scene is visible in all results, dwarf mountain pine is well recognizable everywhere. The stones as 

such, or the paths formed by them, are best distinguished on ExB, while ExR distinguishes areas of light brown 

grass (upper edge on the right). ExG, for example, practically does not distinguish between stones and brown areas 

(formed by fallen old grass). 
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Fig. 4.  Data 1 colored according to individual vegetation indexes, and type I (blue) and type II (red) errors for ExG k = 15 

 

Data 2 (Fig. 5) consists of essentially single-colored rock whose color pattern is also created by the 

illumination - differently tilted surfaces are differently bright, although they are of the same material. ExG again 

distinguishes only the vegetation, while ExR and ExB accentuate the original colors of the surfaces more. Again, 

however, the basic identification of vegetation clumps is visible in all images. 

Fig. 6 shows similar figures for Data 3. The suitability for this purpose is shown by the virtual absence of the 

drawing in the blue region for ExG, which is visible for the other indexes. 
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Fig. 5.  Data 2 colored according to individual vegetation indexes, and type I (blue) and type II (red) errors for ExG k = full 

 

 
Fig. 6.  Data 3 colored according to individual vegetation indexes, and type I (blue) and type II (red) errors for ExR k = 50 

 

As far as the green point identification errors are concerned, it is also worth mentioning here Fig. 4, Fig. 5, 

and Fig. 6 (always the lower right figure) where specific examples are. Fig. 4 a Fig. 5 illustrate the distribution of 

misdetected points in very good results, where it can be seen that these are mostly single points and, in fact, on 

closer examination, it is not possible to say for sure whether the point was correctly evaluated by the algorithm or 

by a human operator. The case is different in Fig. 6, where the result of the moderately "failed" ExR filter was 
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selected, where the detection shift is clearly visible, with a kind of wrapper at the different regions defining the 

vegetation. It is a boundary setting when the detection boundary is further shifted; the vegetation starts to mix with 

other points. 

As a result of the testing, it is found that the match with the human operator's work is best for the vegetation 

index ExG, the remaining indexes have different properties, and it may be that in different scenes with different 

materials and therefore, different colors, it may be possible to detect additional feature points to detect the 

necessary information. 

 

Conclusions 

 

This paper presents a proposed method for filtering vegetation from point clouds based on vegetation indexes 

determined from RGB color information only. A test is performed to demonstrate the applicability of this method 

to data where the color information (green) uniquely identifies vegetation. The selected vegetation filters ExG, 

ExR, ExB, and ExGr were tested, where ExG was the best. K-means clustering helps an operator to distinguish 

more easily between vegetation and the rest of the point cloud without compromising the quality of the result. The 

method is practically implementable using the freely downloadable and usable CloudCompare software. However, 

when applying the method, it is important to beware of the fact that the image information in mobile or UAV 

scanners may be significantly spatially shifted (Štroner, Urban, & Línková, 2021). 
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