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Abstract 

This study aims to determine the impact of surface temperature 

change, considered a proxy for climate change in the United 

Kingdom, on life expectancy using annual data from 1990–2021. 

Government expenditure is used as a control variable. The Fourier 

function-based bootstrap autoregressive distributed lag model is 

utilized to examine the cointegration among variables. The analysis 

outcomes reveal a long-term relationship between life expectancy, 

surface temperature change, and government expenditure. 

Furthermore, the findings reveal that surface temperature change 

significantly reduces life expectancy in the long run, while there is 

no significant relationship between the two variables in the short 

term. The Toda-Yamamoto causality analysis results show a 

unidirectional causality relationship between surface temperature 

change and life expectancy. Additionally, a significant bidirectional 

causality relationship is found between life expectancy and 

government expenditure. 
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Introduction 

 

Climate change stands as a paramount global challenge of the 21st century, entailing far-reaching 

consequences for human health and well-being. According to the Intergovernmental Panel on Climate Change 

(IPCC), a body of the United Nations, greenhouse gas emissions predominantly caused by human activities have 

resulted in global warming, causing the global surface temperature to rise by 1.1°C above the period 1850–1900 

during the years 2011–2020 (IPCC, 2023). Despite national commitments set by governments to reduce 

greenhouse gases, projections suggest that greenhouse gas emissions will increase in the future. Despite 

measures taken, greenhouse gas emissions are projected to contribute to an average global warming of 2.8°C by 

the year 2100 (IPCC, 2023). Climate experts anticipate more frequent and severe heat waves, extreme weather 

events, and rising sea levels as a result of climate change (Hansen et al., 2006). The escalating global warming 

elevates global surface temperatures and rapidly alters the world climate. This transformation is associated with 

adverse effects such as melting glaciers, diminishing winter snow cover, increasing droughts, rising sea levels, 

ocean acidification, elevated atmospheric water vapour, the proliferation of flood disasters, and an increased 

frequency of destructive storms. Changing climate and weather conditions negatively impact human lives in 

many parts of the world (Meierrieks, 2021). The aforementioned alterations in the physical environment pose 

substantial threats to human health, manifesting both directly and indirectly. Direct health consequences 

encompass heat-related illnesses and fatalities, injuries and fatalities arising from extreme weather events, and 

exposure to ultraviolet radiation (Harper et al., 2021). Indirect health consequences stem from the disruption of 

ecological and social systems, including the spread of infectious diseases, malnutrition, displacement, migration, 

conflict, and mental stress (Harper et al., 2021). Climate change increases the incidence of infectious diseases 

during both the summer and winter seasons, resulting in changes in morbidity and mortality rates (Goerre et al., 

2007; Abrignani et al., 2012; Franchini & Mannucci, 2015). Furthermore, climate change arising from global 

warming adversely affects essential needs such as food and water, human health, national economies, and 

society (IPCC, 2023). These adversities negatively impact the quality of life and health of individuals. In 

summary, climate change is causing an increase in surface temperatures worldwide, and the potential effects of 

these changes on human health are becoming a growing source of concern. Air temperature emerges as a 

significant determinant affecting human life and health (Gasparrini et al., 2015). Moreover, climate-related 

temperature changes adversely affect household production activities, making lives more challenging. Therefore, 

the challenges mentioned above may indirectly result in negative implications for life expectancy. 

Life expectancy epitomizes the cumulative effects of diverse factors that influence health, encompassing 

genetics, lifestyle, socioeconomic status, healthcare practices, and environmental exposures (Spiers et al., 2021). 

Therefore, life expectancy can be used as a measure of the health impacts of climate change. The negative 

impact of climate change varies geographically due to different local environmental conditions and the 

sensitivity of the local population (Watts et al., 2015). In this context, it is crucial to investigate the effects of 

climate change on life expectancy in the United Kingdom (UK), a geography where the impacts of 

industrialization, both pioneering and concluding, can be observed. In the UK, studies have shown that the 

extreme temperature threshold is exceeded in nearly every region (McCarthy et al., 2019). In the year 2019, the 

UK experienced a maximum temperature of 38.7 °C, a record-breaking maximum temperature (Sahani et al., 

2022). A significant increase in mortality rates associated with this extreme temperature was observed 

(Brimicombe et al., 2021). Excessive urban heat, coupled with urbanization and population density increases, 

further elevates air pollutants, potentially making them more lethal. 

According to the Human Development Index released by the United Nations Development Programme 

(UNDP) based on 2022 data, the life expectancy in the UK in 2019 was 81.7, dropping approximately by 1.22% 

to 80.7 in 2021 (UNDP, 2023). In this context, more efforts are required both in the UK and globally to 

minimize the adverse effects caused by extreme heat waves. Particularly, it is essential for further research on 

future climate changes in the UK and the impact of government policies on health. These efforts can be fostered 

through global initiatives and individual actions. Moreover, the utilization of eco-friendly materials in the 

construction of urban areas can effectively reduce the degradation of the global climate and environment (Imran 

et al., 2018; Debele et al., 2019). Raising awareness of environmentally friendly practices in production and 

consumption activities is another critical strategy. 

Life expectancy is acknowledged as one of the key indicators reflecting a country's health and 

socioeconomic well-being (Nolte et al., 2002; Ho & Hendi, 2018). It signifies the average duration individuals 

are expected to live upon their birth, offering valuable insights into the overall quality of life within societies. 

Life expectancy, widely employed by prominent international organizations, typically constitutes a critical 

measure in conveying general health outcomes (World Health Organization, 2015; Salomon et al., 2012). 

Alongside per capita income and education, life expectancy serves as a crucial indicator of human development. 

Within the Human Development Index (HDI), measured and published by the UNDP, life expectancy at birth 

plays a role in calculations as a component of the health dimension of human development. As discussed above, 

the detrimental impacts of climate, particularly those related to temperature and surface conditions, may 
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negatively impact life expectancy (Scovronick et al., 2018). Numerous factors can influence life expectancy at 

birth. However, climate change, which directly and indirectly affects many factors, can significantly affect life 

expectancy. Climate changes, leading to the deterioration of air quality and the spread of infectious diseases due 

to rising temperatures, may indirectly affect human health negatively (Haines et al., 2006). Furthermore, one of 

the factors that can influence life expectancy is government expenditures. These expenditures have been used as 

a control variable in the analyses. Government expenditures serve as an important reflection of a country's public 

policies and resource allocation. These expenditures encompass vital areas such as healthcare, education, 

environmental protection, and other social programs. In particular, healthcare expenditures and, consequently, a 

country's healthcare system are significant factors that influence life expectancy (Nixon & Ulmann, 2006). 

In light of the crucial information provided above, the scientific investigation of the impact of climate 

change on health can be characterized as a current and significant topic. An important indicator of determining 

human life length is 'life expectancy.' Temperature changes have been utilized in numerous studies as an 

indicator of climate change. This study investigates the relationship between life expectancy and changes in 

surface temperature due to changes in air temperature and contributes to the health climate change literature. We 

believe that this study will contribute valuable insights into the complex relationship between climate change and 

life expectancy in the UK and will support the development of future policies. This study contributes to the 

existing literature in three ways. First, this is an attempt to examine the life expectancy-climate change nexus for 

the UK with current data. Second, the Fourier Function-based bootstrap autoregressive distributed lag approach 

is used to investigate the life expectancy-climate change nexus. This approach performs better than other 

methods because it more realistically analyzes the relationships between the dependent and independent 

variables with a nonlinear approach. Third, this study complements the limited knowledge available on the life 

expectancy-climate change nexus and contributes to a current topic being discussed. 

This study is structured as follows: The literature review section provides a literature review on the topic. 

The Data and Methodology section explains the data used and the models applied. The Empirical Results section 

presents and interprets the findings. Finally, the Conclusion section explains the results, limitations, and 

contributions of this study to future research.  

 

Literature Review 

 

The relationship between climate change and life expectancy has become a significant research topic in 

recent years within the fields of environmental and health sciences. Several studies specifically focus on climate 

change's effects on human health, particularly its impact on life expectancy. These studies have investigated the 

association between climate change and life expectancy, employing diverse methodologies, data sources, and 

geographical scales. 

Climate change can increase the frequency and intensity of heat waves. The adverse effects of heat waves 

on elderly individuals and those with chronic diseases can exert a substantial influence on life expectancy 

(Gasparrini et al., 2015). Climate change can result in a decrease in water resources and food insecurity. This 

situation can have an adverse impact on life expectancy by causing problems with nutrition and water supply 

(Wheeler & von Braun, 2013). 

A substantial body of research examining the relationship between climate change and health demonstrates 

that climate change has direct and indirect effects on health. Notable among these impacts are factors such as the 

increased frequency of heat waves (Mitchell et al., 2016; Sahani et al., 2022), rising sea levels, and deteriorating 

air quality. Both extreme heat events and cold spells substantially elevate the risk of mortality by causing 

detrimental health consequences for individuals (Hajat et al., 2014). Investigations into the connection between 

temperature and health have been conducted using different methods in various countries. For instance, 

Scovronick et al. (2018) utilized the distributed lag nonlinear model (DLNM) methodology to investigate the 

relationship between daily maximum temperature and deaths in South Africa for the period 1997–2013. The 

analysis revealed a significant association between daily maximum temperature and mortality rate. Díaz et al. 

(2019), utilizing Generalized Linear Models (GLM) and meta-analysis techniques, analyzed the relationship 

between death rates and temperature in Spain from 1983 to 2013. Their analyses found that the impact of cold 

temperatures on mortality increased over time. 

In the analysis conducted by Hauer and Santos-Lozada (2021), the potential impact of climate change on 

life expectancy in 31 European countries has been anticipated. It is projected that climate change extremes will 

reduce life expectancy by 0.24 years until the year 2100 for an average European country and may result in 

differences exceeding 1.0 years in some countries by 2100. Heo et al. (2019) analyzed the impact of temperature 

on mortality and morbidity in South Korea between 2011 and 2014 using DLNM and meta-analysis methods. 

The results of the analysis demonstrated that temperature significantly affects mortality and morbidity. Hu et al. 

(2019) conducted analyses using time series modelling (GLM) and random-effects meta-analysis methods, 

utilizing temperature variability and mortality rate data for the period 2005 –2009 in different regions of China. 

According to the results of the analysis, it was found that 5.33% of mortality rates were associated with 
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temperature variability, with this percentage being 4.99% in urban areas and 6.02% in rural areas. Huber et al. 

(2020) predicted the significant impact of global warming on temperature-related deaths in Germany's 12 major 

cities during the period 1993 –2015 through their analysis of daily death counts and daily mean temperatures 

using the DLNM method. Khan et al. (2021), in their analysis using the DLNM method for the years 2003–2007 

in the United States, investigated the relationship between exposure to outdoor temperatures in ageing adults and 

cognitive functions. Their analysis showed that individuals' exposure to temperature was associated with lower 

cognitive scores. Kewalani and Saifudeen (2021), using temperature as a measure of climate change, explored 

the impact of climate change on life expectancy. The study's results indicated that climate change has adverse 

effects on life expectancy. Ingole et al. (2022) examined the effect of daily mean temperature on mortality in 

India for the period 2004–2012 using the DLNM method. The study's findings suggested that the total number of 

deaths attributable to cold was higher than those attributable to heat. 

A growing body of evidence suggests that health and social expenditures may play a role in determining life 

expectancy. For instance, Nixon and Ulmann (2006) and Jaba et al. (2014) have demonstrated a positive 

correlation between healthcare expenditures and average life expectancy. Linden and Ray (2017) have indicated 

that public expenditures are associated with higher life expectancy at higher levels. However, some studies have 

found that healthcare expenditures do not have an impact on health outcomes (Blázquez-Fernández et al., 2018). 

Based on a comprehensive synthesis of the studies mentioned above, we may conclude that the frequency 

and intensity of heat waves brought on by climate change may impact life expectancy and contribute to reduced 

life expectancy for the elderly and people with chronic illnesses. Furthermore, as shown by several studies 

carried out using varied methodologies in various nations, this literature review methodically establishes a 

common foundation demonstrating the direct and indirect consequences of climate change on health. It also 

emphasizes the obvious need for more research in this area to lessen the severe and negative effects of global 

warming. In the studies discussed above, nonlinear methods were mostly preferred for analysis. The study topic 

was analyzed using nonlinear methods, which have become increasingly preferred in recent years. 

The UK boasts a long-standing legacy of research and policy on climate change and health. It has deftly 

developed a range of frameworks and tools to assess and manage the health risks and opportunities presented by 

climate change. Nevertheless, a dearth of empirical evidence persists regarding the magnitude and direction of 

the climate-health nexus in the UK, particularly at the national level. Furthermore, the role of other influencing 

factors merits consideration, including government expenditure. Consequently, this study endeavours to bridge 

this knowledge gap by elucidating the impact of surface temperature change, a proxy for climate change, on life 

expectancy in the UK, utilizing annual data from 1990 to 2021. Government expenditure is incorporated as a 

control variable, given its potential to influence both population exposure and response to climate change. 

 

Material and Method 

 

a) Data Set 

This study examines the effects of climate change and government expenditure on life expectancy using 

data in the UK from 1990-2021. The UK was chosen as a sample for four reasons. (i) The UK is vulnerable to 

various impacts of climate change, including extreme weather events, rising sea levels, and changes in 

temperature and precipitation patterns (Tsimplis et al. 2005). These factors can have significant implications for 

public health, including impacts on life expectancy. (ii) The UK has robust data collection systems, including 

healthcare records and meteorological data, which provide reliable information for conducting empirical 

research. (iii) The UK's advanced climate change policies make it an ideal case study for understanding the 

effects of climate change on life expectancy, offering valuable insights applicable to other regions with similar 

challenges. (iv) Finally, studying climate change's impact on life expectancy in the UK, with its advanced 

healthcare system and comprehensive climate data, can advance scientific understanding of this intricate 

relationship amid global climate concerns. 

The variables used in this study, their definitions, and their sources are given in Table 1. STC and GEXP 

are considered independent variables, while LE is considered the dependent variable in the analysis. GEXP 

series is included in the model as a control variable and is obtained from the International Monetary Fund 

(IMF) Datamapper tool (IMF, 2023a). STC series were gathered from the IMF Climate Change Indicators 

Dashboard (IMF, 2023b). LE series were retrieved from UNDP (UNDP, 2023).  

 
Tab. 1. Variables and their descriptions 

Variables Descriptions  Sources 

𝐿𝐸 Life expectancy at birth UNDP 

𝑆𝑇𝐶 Surface Temperature Change IMF 

𝐺𝐸𝑋𝑃 Government Expenditure, per cent of GDP IMF 

 
To handle the dataset in detail, we plotted it from 1990 to 2021 in Figure 1. As can be seen in Figure 1, LE 

was at its highest level in 2019 but experienced a notable decline of approximately 1.6% in 2020 due to the 
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impact of the pandemic. It can be said that the LE series has been in a significant increasing trend over the years, 

except for 2020. STC was at its lowest in 1996 but at its highest in 2014. Interestingly, STC exhibits a cyclical 

pattern, with periods of growth followed by periods of decline. It can be said that the reason for this trend is 

climate change due to global warming. Interestingly, GEXP displays a quasi-periodic pattern with an average 

cycle length of approximately 8 years, with its highest value in 2009. As Figure 1 shows, LE has increased over 

the years. 
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Fig. 1. Historical trends of dependent variable and independent 

variables 
 

b) Fourier ARDL Cointegration Test 

The model used for the long-term relationship between dependent and independent variables is assumed to 

be as given in Equation 2: 

 

𝐿𝐸𝑡 =  𝛼0 + 𝛼1𝑆𝑇𝐶𝑡 + 𝛼2𝐺𝐸𝑋𝑃𝑡 +  𝑡
                                                                  (1) 

where 𝛼0 is the constant term and t is the error term. The parameters 𝛼1 and 𝛼2  represent slope coefficients 

values. Equation 1 can be tested using the Autoregressive Distributed Lag (ARDL) boundary test developed by 

Pesaran et al. (2001).To apply the Fourier function-based Bootstrap Autoregressive Distributed Lag (FARDL) 

procedure, equation (1) is rewritten within the framework of the error correction model to obtain equation (2). 

 

∆𝐿𝐸𝑡 =  𝜑0 + ∑ 𝜑1𝑖∆𝐿𝐸𝑡−𝑖 +
𝑝−1
𝑡=1 ∑ 𝜑2𝑖∆𝑆𝑇𝐶𝑡−𝑖

𝑝−1
𝑡=1 + ∑ 𝜑3𝑖∆𝐺𝐸𝑋𝑃𝑡−𝑖

𝑝−1
𝑡=1 𝛼2 + 𝜃1𝐿𝐸𝑡−1 + 𝜃2𝑆𝑇𝐶𝑡−1 +

𝜃3𝐺𝐸𝑋𝑃𝑡−1 + 𝜀𝑡                 (2) 

 

where ∆ is the difference operator, and 𝜀𝑡 is the standard error term. 𝜑1, 𝜑2 and 𝜑3 
is a short-term relationship, 

while 𝜃1, 𝜃2 and 𝜃3 are long-term relationships. Appropriate delay length is determined by the Akaike 

Information Criterion (AIC). To reject the null hypothesis, the F-test (FA) and t-test (t) proposed by Pesaran et al. 

(2001) and the F-test (FB) advanced by McNown et al. (2018) should be used (Yilanci et al. 2020). Accordingly, 

to test the joint significance of the delayed values of dependent and independent variables, the null hypothesis 

𝐻0𝐴: 𝜃1 = 𝜃2 = 𝜃3 = 0, should be rejected. To test the significance of only the delayed value of the dependent 

variable, the null hypothesis 𝐻0𝑡: 𝜃1 = 0, and to test the significance of the delayed values of independent 

variables, the null hypothesis 𝐻0𝐵: 𝜃2 = 𝜃3 = 0 should be rejected. Using the Fourier function instead of dummy 

variables may lead to better results in capturing an unknown number of hard and soft structural breaks (Gallant 

and Souza, 1991). Therefore, to better capture structural breaks, Equation (3) uses the Fourier function (Yilanci 

et al. 2020). 

 

𝑑(𝑡) = ∑ 𝛼𝑘𝑠𝑖𝑛 (
2𝜋𝑘𝑡

𝑇
) +𝑛

𝑘=1 ∑ 𝛽𝑘𝑐𝑜𝑠 (
2𝜋𝑘𝑡

𝑇
)𝑛

𝑘=1               (3) 
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In equation (3), π = 3.1416, and k represents the selected frequency value. Here, d(t) denotes the 

deterministic trend, t represents the trend term, and T symbolizes the sample size. Based on this, a single-

frequency equation, as formulated in equation (4), can be created, following the approach of Ludlow and Enders 

(2000) and Becker et al. (2006). 

 

𝑑(𝑡) = 𝛾1𝑠𝑖𝑛 (
2𝜋𝑘𝑡

𝑇
) + 𝛾2𝑐𝑜𝑠 (

2𝜋𝑘𝑡

𝑇
)                            (4) 

 

When the error correction model is appropriately adjusted to the Fourier function, equation (2) transforms 

into equation (5).  

 

∆𝐿𝐸𝑡 =  𝜑0 + ∑ 𝜑1𝑖∆𝐿𝐸𝑡−𝑖 +
𝑝−1
𝑡=1 ∑ 𝜑2𝑖∆𝑆𝑇𝐶𝑡−𝑖

𝑝−1
𝑡=1 + ∑ 𝜑3𝑖∆𝐺𝐸𝑋𝑃𝑡−𝑖

𝑝−1
𝑡=1 𝛼2 + 𝛾1𝑠𝑖𝑛 (

2𝜋𝑘𝑡

𝑇
) +

𝛾2𝑐𝑜𝑠 (
2𝜋𝑘𝑡

𝑇
) + 𝜃1𝐿𝐸𝑡−1 + 𝜃2𝑆𝑇𝐶𝑡−1 + 𝜃3𝐺𝐸𝑋𝑃𝑡−1 +  𝑡

                          (5) 

 

In Equation (5), when the frequency value (k) is an integer, the breaks are considered transient. Conversely, 

when the frequency value (k) is fractional, it indicates that the breaks are permanent (Christopoulos & Leon-

Ledesma, 2011). All values within the range k = [0.1, ..., 5], with increments of 0.1, have been used to estimate 

equation (5) (Christopoulos & Leon-Ledesma, 2011; Omay, 2015). Critical values for FA, FB, and t have been 

calculated using bootstrap simulation. 

 

c) Toda-Yamamoto Causality Test  

To test causality, we used a modified Wald test developed by Toda and Yamamoto (1995).  This test has 

two important advantages. First, by ignoring non-stationarity or cointegration between series, the modified Wald 

test avoids some problems associated with the ordinary Granger causality test (Zapata and Rambaldi, 1997; 

Wolde-Rufael, 2005). Second, in Toda and Yamamoto's (1995) approach, a VAR model is fitted to the levels of 

the variables, thereby minimizing the risk of incorrect identification of the order of integration (Mavrotas and 

Kelly, 2001). According to this method, the correct VAR order, k, is artificially enhanced by the maximal 

integration order, dmax. After these stages, the modified Wald hypothesis test is applied. To perform Toda and 

Yamamoto's (1995) causality test, the study model is specified with the VAR system below. 

 

𝑳𝑬𝒕 =  𝜶𝟎 + ∑ 𝜶𝟏𝒊𝑳𝑬𝒕−𝒊 + ∑ 𝜶𝟐𝒋𝑳𝑬𝒕−𝒋 + ∑ 𝜷𝟏𝒊𝑺𝑻𝑪𝒕−𝒊 + ∑ 𝜷𝟐𝒋𝑺𝑻𝑪𝒕−𝒋 + 𝝐𝟏𝒕
𝒅𝒎𝒂𝒙
𝒋=𝒌+𝟏

𝒌
𝒊=𝟏

𝒅𝒎𝒂𝒙
𝒋=𝒌+𝟏

𝒌
𝒊=𝟏          (6) 

 

 

𝑺𝑻𝑪𝒕 =  𝜸𝟎 + ∑ 𝜸𝟏𝒊𝑺𝑻𝑪𝒕−𝒊 + ∑ 𝜸𝟐𝒋𝑺𝑻𝑪𝒕−𝒋 + ∑ 𝜹𝟏𝒊𝑳𝑬𝒕−𝒊 + ∑ 𝜹𝟐𝒋𝑳𝑬𝒕−𝒋 + 𝝐𝟐𝒕
𝒅𝒎𝒂𝒙
𝒋=𝒌+𝟏

𝒌
𝒊=𝟏

𝒅𝒎𝒂𝒙
𝒋=𝒌+𝟏

𝒌
𝒊=𝟏          (7) 

 

Eq (1) specifies Granger causality from 𝑆𝑇𝐶𝑡 to 𝐿𝐸𝑡; similarly, Eq (2) implies Granger causality from 𝐿𝐸𝑡  

to  𝑆𝑇𝐶𝑡. 

 

The Empirical Results 

 

Table 2 reports the descriptive statistics of the dataset used in the analyses. It is worth noting that LE has the 

highest mean value, whereas STC contains the lowest mean value. GEXP has the lowest standard deviation, 

while the STC series contains the highest variation. Based on the p-value of the Jarque-Bera normality test, it can 

be stated that the series is not normally distributed. 
 

Tab. 2. Descriptive statistics of variables 

 LE STC GEXP 

 Mean 78.96169 0.852063 42.69959 

 Median 79.23330 0.938500 42.51265 

 Maximum 81.72500 1.718000 51.45880 

 Minimum 75.73590 -0.142000 36.76210 

 Std. Dev. 1.901536 0.445045 3.522169 

 Skewness -0.232096 -0.581264 0.716100 

 Kurtosis 1.608469 2.864621 3.207222 

    

 Jarque-Bera 2.869109 1.826396 2.792181 

 Probability 0.238222 0.401239 0.247563 
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 Sum 2526.774 27.26600 1366.387 

 Sum Sq. Dev. 112.0910 6.140008 384.5759 

    

 Observations 32 32 32 

 
Prior to employing the Fourier Augmented Dickey-Fuller (FADF) unit root test, it is essential to evaluate 

the statistical significance of the Fourier function. If the Fourier function is statistically significant, the FADF 

unit root test can be applied; otherwise, the traditional ADF unit root test should be used to evaluate the 

stationarity properties of the series (Ozgur et al., 2022). The results of the tests in Table 3 demonstrate the 

significance of Fourier functions for all variables. Consequently, the null hypothesis value is tested for these 

variables using the Fourier ADF unit root test. 

An examination of the FADF unit root test results in Table 3 reveals that the dependent variable, LE, is not 

stationary at the level. However, LE exhibits stationarity in its first difference. Additionally, the independent 

variables, STC and GEXP, are found to be stationary at the level. The critical value at the 5% significance level 

for a sample size of 100 is 7.58. The F-statistic values for all variables are greater than the critical value of 7.58 

at the 5% significance level, leading to the rejection of the null hypothesis of no linear trend. Therefore, the 

FADF test can be used as a more robust alternative to the traditional ADF test in the presence of nonlinear 

trends. 

 
Tab. 3. FADF and ADF unit root test results 

Variables Min RSS k FADF F-statistic 

LE 1.611813 1 -0.871010 9.457177 

STC 3.411671 2 -5.219877 25.73465 

GEXP 113.2523 2 -4.030509 11.57769 

D(LE) 1.639496 1 -3.872216 8.305820 

 
Note: At the 5% significance level, the FADF unit root test critical values are -3.81 for k=1 and -3.27 for k=2, and for the F-test, it is 

7.58. 

 
Since the variables have been confirmed to be stationary, we can use the FARDL cointegration test to 

examine the long-term relationship between variables, applying the model specified in Equation 2. The FARDL 

cointegration test results are presented in Table 4. Based on the test results, the optimal frequency value is 

identified as 0.5. Furthermore, the FA and FB test statistics are found to be significant at the 10% level, and the t-

test statistic is also significant at the 1% level. These findings collectively indicate the presence of a long-term 

relationship between the variables. In conclusion, we establish the existence of a cointegration relationship 

between LE, STC, and GEXP. 

 
Tab. 4. Fourier ARDL cointegration test results 

Selected Model: FARDL(2, 1, 2)  Optimal Frequency: 0.5 AIC: -0.55277  

     

Test Statistics Test Statistics Value Bootstrap Critical Values 

  %10 %5 %1 

FA 6.513815∗ 5.6698515 6.8299749 10.72902 

t -4.244469∗∗ −3.609565 -4.0502471 −5.114761 

FB 5.085515∗ 4.8706935 6.358044 9.866034 

      Note: ∗ and ∗∗ indicate significance at 10% and 5% levels, respectively. We performed 4000 simulations to obtain the critical values. 

 

In Table 5, there are long-term estimates that are statistically significant at the 5% level, except for GEXP. 

The STC coefficient is negative is negative, indicating that STC reduces LE. It shows that in the long run, a one-

unit increase in STC also leads to a decrease of approximately 0.18 years in life expectancy. This result may 

suggest uncertainty in global climate policies in the long term and the government's perception of environmental 

degradation as a serious issue in the UK. Furthermore, this finding highlights the potential effects of global 

warming and environmental factors on human health. These findings are consistent with Sewe et al. (2018), 

Abdulkadir et al. (2018), Hauer and Santos-Lozada (2021), Kewalani and Saifudeen (2021), and Rahman et al. 

(2022). In recent years, global warming-induced disasters, manifested through human activities that contribute to 

environmental degradation, have become a reality, adversely impacting human health and quality of life. A trend 

variable representing this situation has been included in the model. In the long term, it is observed that global 

warming significantly reduces the life expectancy associated with this adverse trend (Table 5). This situation 

suggests a significant decrease in LE as a result of the intensification of disasters associated with global 

warming. This finding reinforces concerns about the health risks associated with climate change. The results of 
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our study show that climate change could slow the increase in life expectancy in the UK if action is not taken. 

Forzieri et al. (2017) estimated that climate change-related disasters could affect approximately two-thirds of the 

European population by 2100. Furthermore, the study findings revealed that GEXP has no statistically 

significant long-term impact on LE. This finding suggests uncertainty about the impact of government 

expenditures on life expectancy. However, some studies indicate that health expenditures, rather than general 

public expenditures, contribute to improving life expectancy (Nixon and Ulmann 2006; Jaba et al. 2014; 

Nkemghae et al. 2021). 

 
Tab. 5. Long-run estimation results (Dependent variable: LE) 

Variables Coefficient Std. Error Prob.    

STC -0.180482** 0.079500 0.0350 
GEXP -0.002336 0.007396 0.7556 

TREND -6.287728*** 0.645936 0.0000 

      Note: **p < 0.05; ***p < 0.01. 

 

An error correction model (ECM) was estimated using the FARDL procedure to examine short-term 

dynamics. The short-term results are presented in Table 6. The results have not revealed a significant short-term 

relationship between STC and LE. This finding indicates that STC does not explain LE in the short term. 

Contrary to expectations, no statistically significant relationship between LE and GEXP was observed in the 

short term. The coefficient of GEXP exhibits a negative sign, indicating a potential adverse effect of government 

expenditures on LE in the short term. Namely, government spending does not align with the expected signs. 

Although coefficients in empirical studies may be statistically significant, they may not always have the 

expected signs according to a priori economic criteria. The control variable, GEXP, is found to have a negative 

impact on LE at a significance level of 10%. This result aligns with findings from Ogbonna and Ogbeide (2016) 

for Nigeria and Blazquez-Fernández et al. (2018) for a panel of the United States and some OECD countries, 

suggesting a potential inefficiency of public expenditures in the short term. Therefore, carefully considering 

cost-effectiveness analyses should guide public spending decisions rather than relying solely on increased 

expenditures (Blazquez-Fernández et al., 2018). 

The error correction term ECT(-1) coefficient is statistically significant and negative, indicating that 

deviations from the long-term equilibrium tend to be corrected over time. Based on the cointegration equation, 

the value of ECT(−1) is another method used to confirm a long-term connection between variables. Thus, our 

findings underscore the importance of feedback mechanisms in stabilizing life expectancy (LE) in the UK. The 

coefficient of the ECT term (-1.91) indicates that the deviation in LE is corrected by approximately 191% in the 

following year. However, no significant relationship between STC and LE has been detected in the short term. 

 
Tab. 6. Short-run estimation results. 

Variable Coefficient Std. Error Prob. 

∆LEt-1 -0.504458** 0.212171 0.0281 
∆LEt-2

 -0.405098* 0.223899 0.0863 

∆STCt -0.120002 0.092495 0.2100 

∆STCt-1 -0.224639** 0.093067 0.0260 
∆GEXPt -0.025488* 0.013993 0.0843 

∆GEXPt-1 -0.008590 0.021429 0.6930 

∆GEXPt-2
 0.029618 0.018852 0.1327 

γsin 615.7111*** 103.1513 0.0000 

γcos -167.6352*** 30.97554 0.0000 

C 313.0195*** 53.22544 0.0000 
ECTt-1 -1.909556*** 0.282649 0.0000 

R2 0.994691   

Adjusted R2 0.991897   
F test 355.9915***   

Note: γsin and γcos show Fourier terms. *p<0.10; **p<0.05; ***p<0.01. 

 
Diagnostic tests of the model are presented in Table 7. The value of adjusted R-squared indicates that 

approximately 99% of the variation in LE is explained by STC and GEXP. The Ramsey RESET set suggests that 

the model is correctly specified, while the LM test demonstrates the absence of serial correlation. The Breusch-

Pagan-Godfrey test confirms that heteroskedasticity is not an issue. 

 
Tab. 7. Diagnostics tests 

Adjusted R2 F-statistic Prob. 

Ramsey RESET test 0.117221  0.9080 

LM test 1.744020 0.5551 

Breusch-Pagan-Godfrey Heteroskedasticity Test 0.894925  0.5551 
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CUSUM and CUSUM-square tests showing the stability of the model are given in Figure 2. The findings 

from the CUSUM and CUSUM-square tests reveal that the estimated model is stable. 

 

 
Fig. 2. CUSUM and CUSUM-square test. 

 
Following the cointegration analysis that established a long-run relationship, we used the Toda-Yamamoto 

causality tests to investigate causal relationships. As shown in Table 8, the causality analysis results indicate a 

one-way causal relationship from STC to LE at a 5% significance level. This result is consistent with Rahman 

and Alam (2022) findings. Additionally, a significant bidirectional causal relationship exists between LE and 

GEXP. This finding aligns with the study by Ogunsakin and Olonisakin (2017). Both STC and GEXP can be 

considered causes of LE. A nexus between STC, GEXP, and LE can be inferred in this context. Furthermore, a 

unidirectional causality relationship from GEXP to STC at a 5% significance level is identified.  

 
Tab. 8. Toda – Yamamoto Causality analysis results 

Model Lag Length 

(k+dmax) 

Wald tests 

χ2 statistic 

χ2 Table Value Relationship and Direction 

LE=ƒ(STC)  

 
2+1 

0.039** 9.081 STC               LE 

STC=ƒ(LE) 0.182 4.863 No 
LE=ƒ(GEXP) 0.032** 8.780 LE               GEXP 

GEXP=ƒ(LE)  0.009*** 9.342 

GEXP=ƒ(STC) 0.390 1.885 No 
STC=ƒ(GEXP) 0.044** 8.086 GEXP               STC 

Note: p<0.10, **p<0.05, ***p<0.01. The LM autocorrelation test statistic (LM stat: 12.53722, prob.: 0.8280) indicates that the probability 

value for the second lag length exceeds 10%, suggesting the absence of autocorrelation issues. 

 

Conclusion 

 

Research on the relationship between climate and life expectancy has been limited and inconsistent, 

highlighting the need for further investigation. This study investigated the impact of surface temperature change, 

which represents climate change, on life expectancy using an annual time series dataset for the UK. The Fourier 

ADF unit root test was used to evaluate the presence of a unit root in the dataset. Short- and long-term 

relationships were analyzed with the Fourier ARDL boundary test. The causality relationship between variables 

was examined using the Toda-Yamamoto causality test. The Fourier function-based Bootstrap ARDL model 

confirmed the existence of a long-run cointegration relationship among the variables. Also, using the Fourier 

ARDL test, a significant relationship between surface temperature change and life expectancy in the long term 

was confirmed. Findings obtained from the Fourier ARDL approach showed that surface temperature change 

reduced life expectancy in the long term, while there was no significant relationship between the two variables in 

the short term. These findings suggest that surface temperature change, and consequently life expectancy, has 

declined over time. Additionally, unlike in the short term, government expenditure was not found to affect life 

expectancy in the long term. Causality results indicated a unidirectional causal relationship between surface 

temperature change and life expectancy and a significant bidirectional causal relationship between life 

expectancy and government expenditure. Namely, the Toda-Yamamoto causality analysis indicated that there 

was a unidirectional causality running from surface temperature change to life expectancy, supporting the 

hypothesis that climate change affects human health and longevity. 

In light of the findings mentioned above, several policy recommendations can be formulated. These 

findings suggest that policymakers need to take measures, especially in the long term, to balance variability in 
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surface temperature change. To achieve this balance and curb the adverse effects of climate change, well-defined 

and long-term climate policies must be established and implemented. Fluctuations in surface temperature change 

in the UK are not solely attributable to domestic activities; they are also influenced by activities taken by other 

countries. In this context, policymakers should intensify their efforts to foster global unity of action in 

counteracting the negative impacts of surface temperature change. 

To balance the variability and adverse effects of surface temperature change, UK policymakers should 

implement special incentives for increasing the production and consumption of renewable energy. In this regard, 

policies such as reducing tariffs on renewable energy imports, increasing research and development funding for 

renewable sources, and providing interest-free loans for renewable energy investments hold significant promise. 

Additionally, the UK government can alleviate the negative impact of climate change on healthcare systems by 

implementing more proactive measures aligned with the Sustainable Development Goals. Such policies can also 

curb the production and consumption of fossil fuels, which are primary contributors to global warming. 

Furthermore, policymakers and researchers should incorporate surface temperature change into development 

modelling and forecasting for the UK, as surface temperature change can, directly and indirectly, influence 

development trajectories. For future research directions, the impact of surface temperature change on other 

dimensions of development, such as education, income, and social structure, can also be explored. 

Considering the limitations of the study, it is crucial to conduct a more in-depth examination of government 

spending and incorporate other potential influencing factors. Additionally, analyzing specific types of climate-

related disasters can provide a more nuanced understanding of their impact.  
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