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Abstract 

In India, three major and effective technologies for underground 

coal mining are continuous miners (CM), shortwalls, and longwalls. 

According to the relevant literature, the available studies have not 

been able to successfully link the productivity of CM-based systems 

to the related independent parameters. However, this study makes 

an effort to find correlations between a number of independent 

variables and production-related attributes using regression 

modelling and curve fitting. A combined relationship was 

constructed considering all independent parameters as input and 

production-related parameter as output, and a relationship was made 

considering each input parameter separately with the production-

related parameter as output. The idea of their strong association to 

represent the interrelationship conveyed by their statistical goodness 

of fit (R2 and RMSE) and the results of the t-test further support 

their relevance. The greatest R2 value was shown for seam thickness 

(0.8779), followed by pillar area (0.84), gradient (0.8112), and coal 

strength (0.6008). Besides geo-mining input parameters, the cutter 

motor power has shown a better correlation with production-related 

parameter, with its corresponding R2 values of 0.8033. The 

pertinent data from three CM panels (not considered during 

equations generation) were then incorporated into the derived 

interrelationships. These validation results were then compared 

using a t-test to the equivalent actual field data, which revealed a 

minor discrepancy. The interrelationships were found to be 

applicable and pertinent in CM–based underground coal mining 

situations. 
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Introduction 

 

One of India's main mining endeavours is coal production, significantly contributing to the nation's revenue 

generation. In the Indian context, opencast mining is the main coal-winning technology. The global trend, 

however, is different; it favours mass-production technologies for underground coal mining, which have 

substantially less environmental impact than opencast mining methods. It is also important to note that 

conventional room and pillar mining has a lower productivity rate, accounting for most underground coal mining 

in India. The government has now taken the initiative to implement modern underground coal mining 

techniques, which have been popular for decades in other significant coal-producing countries. These effective 

technologies include Longwall mining and Continuous mining. The Single or Double-Ended Ranging Drums 

(SERD/DERD) found on Longwall machines are ideal for exploring long and regular coal blocks. However, the 

Continuous Miner (CM) machine works well with the common room and pillar method of mining and thus is 

compatible with both new and old panels during the development and depillaring, making it the most appropriate 

equipment for the underground coal mining scenario in India. 

On the CM systems, some work has previously been done in the areas of performance inquiry, overall 

equipment effectiveness (OEE) analysis, and system reliability analysis. This paper indicates some relevant 

literature corresponding to CM systems as well as other mining systems, the applicability of statistical tools, 

parameters, and techniques, and various numerical modelling phenomena. In addition to this, a few works of 

literature related to challenges in mining, including human factor parameters, are also discussed.  

Logistic regression based model to predict the severity of roof fall accident was prepared by Palei & Das  

(2009), coal cuttability modelling with relevant input parameters was presented by Singh et al. (1995), roof 

convergence modelling using multivariate regression was accomplished by Mandal et al. (2018), factors 

influencing work related injuries for miners were identified using multivariate regression by Paul (2009),  

interrelation between coal production and safety parameters were identified by Feng & Chen (2013),  stochastic 

modelling of Gob Gas Venthole (GGV) was presented by Karacan & Luxbacher (2010), Gao et el. (2021) 

analysed the combined effects of multiple parameters on spontaneous heating of coal, modelling the 

phenomenon of energy generation using organic solid waste was proposed by Ramesh et al. (2016), effects of 

gas outburst on underground coal mining was modelled using logistic regression by Li et al. (2015), Abdulredha 

et al. (2018) modelled the interrelationship between Municipal Solid Waste (MSW) production and hotel 

features using multivariate regression, Dahal & Routray (2011) studied the effects of soil parameters on crop 

yield through multivariate regression modelling, mine worker characteristics and severity of injury was modelled 

using multiple regression by Hull et al. (2015), the interrelationship between primary energy consumption and 

greenhouse gas emission was modelled by Wiecek (2015) through multiple regression, Tyulenev et al. (2017) 

focused on the productivity of hydraulic backhoe in Russian open pit coal mine considering the layer thickness 

and loading position of dump truck as important parameters, Blistanova et al. (2016) focused on preparing a 

flood vulnerability model using Multiple Criterial Analysis (MCA) and Geographical Information System (GIS) 

tools in the Bodva river basin of eastern Slovakia. 

The utility of the hybrid modelling approach and its advantages over the conventional modelling techniques 

were described by Guo et al. (2021). A formula for calculating the capital cost required to establish a coal mine 

was proposed by Mohutsiwa & Musingwini (2015) through a parametric modelling approach. Kim et al. (2006) 

produced a hazard map for abandoned coal mines in Korea using combinations of probabilistic model, logistic 

regression and Geographic Information System (GIS), Que et al. (2016) proposed a simulated optimisation 

technique for efficiency improvement of the continuous transportation system for oil and sand through Ground 

Water Articulating Pipeline (GWAP), Islavath & Bodakunta (2022) worked on identification of optimised pillar 

extraction techniques numerically for CM working, Bartoš et al., (2014) presented an overview of open source 

photogrammetric software and their benefits over the subscription-based packages.  

Reliability analysis through a graphical approach for sub-systems of CM was presented by Banerjee (2017), 

OEE to represent the effectiveness of two CM systems deployed in two underground coal mines in India was 

represented by Banerjee (2019), the OEE of a CM system was evaluated, and further Failure Modes and Effects 

Analysis and reliability analysis was performed on that CM system; further vulnerable sub-systems and their 

significant failure modes were identified by Banerjee & Dey (2022). 

Carpick et al. (1999) presented a general introduction to curve-fitting applications by modelling a complex 

phenomenon. Nevertheless, the characterising parameters of a good curve-fitting for a forecasting model of the 

fossil fuel industry were represented by Wang & Feng (2016). Alvarez et al. (2021) presented a MATLAB-based 

simulation approach for the steam generator. A new strategy to develop a River Water Quality Model (RWQM) 

using a small data set was explained by Cui et al. (2019). Achanti & Khair (2001) investigated the effects of four 

independent parameters on the bit geometry of a cutting machine using a graphical modelling technique. Zhang 

et al. (2021) described the ore production details and recovery rate data for twenty-five minerals and finally 

calculated the losses of twenty minerals between 1920-2018. Simionescu et al. (2022) evaluated the effects of 

governance on controlling pollution by mandating the use of renewable energy in ten European countries using 
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the autoregressive distributed lag (ARDL) model. Cehlár et al. (2017) presented a case study to assess the 

impacts of gold mining and processing in the Slovak Republic. 

Ranjith et al. (2017) stated that the technical and challenging environment of deep mining becomes 

significant where innovative solutions are needed as additional safety measures. Kholod et al. (2020) proposed a 

novel methodology involving methane emissions strategy from abandoned mines. The experimental results 

established a faster increase in abandoned mines with respect to methane emissions than in active mines. 

Kazanin et al. (2021) stressed OSH management, including environmental factors that make the products 

qualitative and competitive. As mining operations are becoming more intensive and the average depth of mining 

is growing so, there is a significant chance of an increase in methane emission and associated risks. Selyukov et 

al. (2020) proposed the limitation of the continuous lateral mining method, where the final quarry depth is 

determined by the vertical height of the underground mine working floor. Dyczko et al. (2020) remarked on the 

advantages and disadvantages of using shearer and plough systems where the impact on the quality of ROM 

(Run of Mine) minerals is analysed. Sánchez & Hartlieb (2020) discussed the importance of innovation in the 

mining industry, where a review of drivers and actors is described from the perspective of current trends. Dey & 

Sharma (2013) focused on the application of ergonomics to control the impact of the underground environment 

on the mine operators' health. Dey et al. (2018) stated the fatigue and musculoskeletal disorder (MSD) related 

problems of continuous mining operators under a given mining environment. Sharma et al. (2016) studied the 

development of cardiac and postural strain of Side Discharge Loader (SDL) operators under a hostile 

underground mine environment. 

A thorough review of available literature in the field revealed a few facts, such as – previous studies did not 

warrant adequate attempts to link the variables affecting productivity and overall performance for a CM-based 

underground coal mining system. Besides this, it was also observed that curve-fitting and regression are two 

effective tools for stochastic modelling of any system. In the present study, an effort was made to apply 

regression modelling and curve-fitting to correlate the input-output phenomenon of a CM-based underground 

mine operation system and further validate the model in connection with its practical implementation. This 

research work may bridge the gap for a predictive tool for equipment selection during a machine's operational 

phase and pre-commissioning stage, thereby improving equipment usage, effectiveness, and system productivity. 

 

Methodology 

 

From the significant literature survey, the methodology for this research work has been decided, which has 

been schematically presented in Fig.1. 

 

 

 

 

 

 

 

 

 

 
Fig.1. Flowchart of methodology 

 

The study starts with a selection of suitable mines that have deployed CM machines for coal production 

underground. Field visits were carried out for a considerable period in each CM panel to collect relevant 

information related to the study; this includes the daily production from machine, machine specification and geo-

mining condition-related information. Subsequently, the relevant parameters for model development were 

identified and discussed with experienced mine personnel, and a research project was sought based on these 

parameters. Further, interrelationship models were developed using MATLAB R2021a with the data sets from 

eleven CM panels considered for study. Whereas data sets corresponding to three CM panels were kept aside for 

validation purposes using the XLSTAT add-in of MS-Excel. 

The interrelationship development is based on the concept of determining relationships by considering the 

production-related parameter as output and geo-mining and machine parameters as input. Nevertheless, the 

interrelationships between one input and output for each input parameter were identified, in addition to a 

combined effect relationship model (where all input parameters were considered together as input and 

production-related parameter was considered as output). The one input-output equations (interrelationships) were 

identified by the curve-fitting application of MATLAB R2021a, whereas the multiple input and one output 

equation was identified using multiple regression application of XLSTAT add-in of MS- Excel. Subsequently, 

these equations were modelled using Python programming for ease of operation and model validation. Finally, 

Selection of 

mines Data collection Parameter 

identification 
Modelling 

Validation of model 
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the developed models were validated using data from three CM panels, which were not considered for equation 

generation. 

 

Description of input parameters 

The performance of a production system depends on several factors. However, in this case, the factors that 

were considered for modelling may be divided into two categories: parameters related to geo-mining conditions 

and parameters related to machines. However, the performance of the CM-based production system is affected 

by many additional parameters, such as environmental factors, inventory management, worker productivity, 

socio-physical factors, operational aspects, and many more. Conversely, these parameters do not significantly 

affect production performance, so the critical parameters within the group of geo-mining and machine 

specifications as identified by skilled mine personnel and engineers were considered for model development; 

these are namely- seam thickness, gradient, pillar area, coal strength, cutter drum width, cutter drum diameter, 

cutter rpm and cutter motor power. The basic summary of these parameters and their mode of effect on the 

productivity of underground mines are described below: 

Seam thickness: 

It indicates the availability of extractable coal in a seam. Low seam thickness results in poor coal 

production from a single pass of cutting. Conversely, an extremity of seam thickness also does not result in 

optimum utilisation. Modi et al. (2017) identify that a seam thickness of 3.5 to 6 m is optimum.  

Gradient: 

Seam gradient drastically affects the efficiency of transport machines (shuttle car or ram car); a higher 

gradient increases transport cycle time. It has been reported by Modi et al. (2017) that a gradient not steeper than 

1 in 10 is optimum for working with a CM machine.  

Pillar size: 

The pillars are the load-bearing members of the overburden strata. Extremely large pillar size results in 

ventilation problems besides delaying the transportation system, whereas smaller pillar sizes result in frequent 

movement of the CM machines between the working faces. Modi et al. (2017) indicate that pillar size within the 

range of 20 m – 30 m (centre to centre) is optimum for the operation of CM. 

Coal strength: 

The strength of coal is an important factor for panel design and speculating the life of cutting picks. Singh 

et al. (1995) indicate that selecting proper picks is important based on the Uni-axial Compressive Strength 

(UCS) of coal. In general, the UCS of coal ranges from 12 to 25 MPa. However, sudden impact with a harder 

stone is a major reason for pick breakage in practical mining scenarios. 

Cutter diameter:  

This is the diameter of the cutting drum on which the picks are mounted. For the standard height CM 

machines, the diameter of the cutter ranges from approximately 0.95 m to 1.1 m. 

Cutter width: 

This is the dimension of the cutter in the transverse direction. Generally, a standard height CM machine 

requires two passes to extract coal from the entire gallery width (approximately 6 m) as they are equipped with a 

cutter ranging between 3 to 3.5 m. Nonetheless, besides causing maneuverability problems, extremely wide 

cutters result in higher coal production during the first pass and a lack of remainder coal in the second pass. On 

the other hand, a very small cutter width increases the number of cutting passes. Therefore, the selection of 

optimum cutter width is of prime importance.   

Cutter motor power and cuter rpm:  

These are basically two different parameters considered in the course of this study. However, the cutter 

motor power indicates the motor's ability to overcome unwanted obstacles, thus reducing the chance of jamming.  

Whereas the cutter rpm is the number of revolutions the cutter makes per minute, Zhao & Liu (2019) 

correlate this to a CM machine's cutting and loading rate. Therefore, it is considered an important parameter for 

the production modelling through CM machine.  

A descriptive picture of a continuous Miner machine is depicted below (Fig.2).  
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 Fig.2. Continuous Miner machine and its sub-systems 

 

Description of the mines under study 

In this research, CM projects from every corner of the nation are included, with a focus on West Bengal, 

Chhattisgarh, Madhya Pradesh, and Telangana. Data corresponding to eleven panels (Mines A to Mines I, where 

Mine-A and Mine-I have deployed two CM machines each in different panels) were used for interrelationship 

development, while data of the other three projects (Mine-J, Mine-K, Mine-L) were reserved for validation 

purposes only. 

 
Fig.3. Working layout of one CM panel 

One of the eleven CM panels is shown above, where geo-mining parameters, as listed in Table 1 below, 

have been used as input parameters for model development. The CM machine's working location has been 

marked as a dark black round label within the panel (Fig. 3). The exact location of the machine is at the 18th dip 

of the 11th level. One more such CM was deputed in the succeeding panel. Each CM machine has shuttle cars 

and a feeder breaker to make a complete composite system. Every CM machine has its predetermined target of 

coal production, where the cutting rate, including the transportation of coal, seems to be an important factor.   

Tab.1. Geo-mining parameters of 11 CM panels considered for equation formation 

Name of mine 
Seam thickness 

(m) 
Gradient 

Pillar size (m 

× m) 

Gallery width 

(m) 

Uniaxial 

Compressive 

Strength of coal 

(MPa) 

Pillar area 

(m2) 

Mine-A (Panel-1) 4.5 1 in 16 32 × 32 6 22.22 676 

Mine-A (Panel-2) 4.5 1 in 16 32 × 32 6 29.11 676 
Mine-B 4.75 1 in 15 34 × 34 6 12.72 784 

Mine-C 3.8 1 in 90 35 × 35 6 16.44 841 

Mine-D 3.5 1 in 17 20 × 20 6 26.52 196 
Mine-E 5.05 1 in 16 36 × 36 6 19.77 900 

Mine-F 5.92 1 in 17 32 × 32 6 28.35 676 

Mine-G 7 
1 in 4 ( 1 in 7.5 

apparent dip) 
75.5 × 65.5 5.5 23.2 4200 

Mine-H 6.5 1 in 7.5 45 × 45 6.5 30.02 1482 

Mine-I (Panel-1) 4 1 in 18 45 × 41 6 17.85 1365 
Mine-I   (Panel-2) 4 1 in 18 54 × 56 6 29.17 2400 
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Model development 

The model development is based on a few assumptions, as stated below: 

• Only standard-height CM machines were considered for the study. 

• Environmental factors such as temperature, pressure, and relative humidity were considered uniform 

during the course of this study. 

• The absenteeism of employees, psychological and physiological factors has a minor impact on 

productivity. 

• The cycle times of all the shuttle cars are considered the same for all the panels. 

• Investigation revealed that the supply chain management was well-planned and adequately managed.  

• Fault detection, replacement and repair of any sub-system have negligible impact on productivity. 

Nomenclature of input parameters: 

Here, the geo-mining parameters and machine parameters were considered input parameters, namely seam 

thickness, gradient, pillar area, coal strength, cutter motor power, cutter diameter, cutter width, and cutter rpm. 

Descriptive details of these input parameters have been mentioned in the "description of input parameters" 

section of this paper. The output parameter considered in this case is the logarithmically transformed values of 

the average daily coal production (Z) for each mine. This logarithmic transformation was performed to better fit 

the curve and develop accurate interrelationships. The nomenclature of the input and output parameters are as 

follows- 

X1 = Seam thickness in m 

X2 = Gradient in degree 

X3 = Pillar area in m2 

X4 = Coal strength or Uni-axial Compressive Strength in MPa  

X5 = Drum width in m 

X6 = Drum diameter in m 

X7 = Cutter motor power in kW 

X8 = Cutter rpm 

Y = Average daily coal production (in tonne) for a corresponding period for each mine 

𝑍 =  𝑙𝑜𝑔10 𝑌  

 

Identification of interrelationships: 

Here, an effort was made to identify the interrelationship between each input parameter and the output 

parameter (Z). In addition, a combined effect relationship model was developed using a multiple regression 

method where all the input parameters (X1 to X8) were considered input and Z was considered output. Eleven CM 

panels were considered for the analysis; which yielded eleven values against each input and output parameter. It 

is worth mentioning here that the geo-mining parameters corresponding to Mine-G were not standard, and the 

mine had various kinds of abnormalities in general working conditions for a standard height CM machine. 

Therefore, the input and output relationships deviated largely from the regular range.  

The curve-fitting plots, along with their governing equations for each input parameter against the output 

(Z), are described as follows: 

 

 
(a) 
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(b) 

 
(c) 

 
(d) 

Fig.4. Curve-fitting and residual plots between a. seam thickness and Z, b. gradient and Z, c. pillar area and Z, d. coal strength and Z 

 

The above Fig. 4 depicts the curve-fitting plot (upper one) and residual plot (lower one) between each geo-

mining parameter and Z. Curve-fitting plot between seam thickness and Z justifies the incompatibility of 

extreme seam thickness for working of the CM system (Fig. 4a) besides that the residual plot depicts a minimum 

deflection; thus, substantiating the goodness of fit of the curve-fitting plot. The governing equation 

corresponding to the plot depicted in Fig.4.a. is mentioned as follows (Eq. 1).   

𝑙𝑜𝑔10 𝑌 = 2.668 + 0.8175 𝑐𝑜𝑠(𝑋1 × 1.171) − 0.3062 𝑠𝑖𝑛(𝑋1 × 1.171) − 0.4044 𝑐𝑜𝑠(2 × 𝑋1 × 1.171) +
0.3409 𝑠𝑖𝑛(2 × 𝑋1 × 1.171) + 0.1132 𝑐𝑜𝑠(3 × 𝑋1 × 1.171) −  0.1417 𝑠𝑖𝑛(3 × 𝑋1 × 1.171)       

(1) 

The curve-fitting plot between gradient and Z (Fig. 4b) depicts a gradually decreasing trend of Z with an 

increase in gradient; this is quite natural as the efficiency of the transport machinery gets drastically reduced with 

increased gradient. The residual plots also confirm a good fit, which was further substantiated statistically. The 

governing equation of the curve-fitting plot depicted in Fig. 4b is mentioned hereunder (Eq. 2). 

𝑙𝑜𝑔10 𝑌 = (−0.009795 ×  𝑋2) + 3.153       (2)     

Fig. 4c depicts the curve-fitting and residual plot, where the pillar area is considered as input and Z is the 

output. Corresponding curve-fitting shows that a pillar area within the range of 1000 m2 to 2000 m2 gives the 

highest output; it also depicts that the extremity of the pillar area negatively affects productivity. The residual 
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plot also depicts minor variations from the recorded values of Z, thus indicating a good fit of the curve. The 

corresponding equation representing the curve (Fig. 4c) is mentioned here as Eq. 3. 

𝑙𝑜𝑔10 𝑌 = 3.274 × 𝑒−[(
𝑋3−1631

4636
)

2
]
                    (3)

  

Fig.4.d. shows the residual and curve-fitting plot between coal strength and Z. The curve shows a steady 

decline in Z with increased coal strength, which is perfectly valid because greater strength also increases the 

resistance the coal offers. A condition with a good fit is also shown in the residual plot. Eq. 4 is the governing 

equation for the curve seen in Fig. 4d above. 

𝑍 = 𝑙𝑜𝑔10 𝑌 =  −0.01094 𝑋4 + 3.422        (4) 

Table 2 further shows the statistical goodness of fit results of the governing equations corresponding to the 

geo-mining parameters (Eq. 1 to Eq. 4).  

Tab.2. Statistical goodness of fit results for equations corresponding to geo-mining parameters. 

Sl. No. Equation Name and No. The goodness of fit result t-test result (ɑ = 0.05) Remarks 

1. 
Seam thickness and Z 

(Eq.1.) 

R-square: 0.8779 

Adjusted R-square: 0.5932 
RMSE: 0.1689 

p-value = 0.999 
p ˃ ɑ; so the null hypothesis 

cannot be rejected 

2. Gradient and Z (Eq.2.) 

R-square: 0.8121 

Adjusted R-square: 0.7913 
RMSE: 0.121 

p-value = 0.538 
p ˃ ɑ; so the null hypothesis 

cannot be rejected 

3. Pillar area and Z (Eq.3.) 

R-square: 0.84 

Adjusted R-square: 0.8 
RMSE: 0.1184 

p-value = 0.998 
p ˃ ɑ; so the null hypothesis 

cannot be rejected 

4. 
Coal strength and Z 

(Eq.4.) 

R-square: 0.6008 

Adjusted R-square: 0.5565 
RMSE: 0.1763 

p-value = 0.366 
p ˃ ɑ; so the null hypothesis 

cannot be rejected 

Note: 

For the above t-tests, the null (H0) and alternate (Ha) hypothesis are as follows: 
H0 = The difference between the means is equal to 0. 

Ha = The difference between the means is different from 0. 

 

As mentioned in Table 2, the goodness of fit results delineate a good fit as their R2 and adjusted R2 values 

tend towards one, whereas the Root Mean Square Error (RMSE) value tends towards zero. From Eq. 1 to Eq. 4, 

the predicted value of Z is obtained easily by putting pertaining data to the equation. The further t-test between 

predicted and actual Z for all eleven CM panels considered for study has depicted no difference in their means 

for Eq.1 to Eq.4 (as for all equations p ˃ ɑ); thus, it substantiates the relevance of the equations 1 to 4. 

Nevertheless, the aforementioned equations (Eq. 1 to Eq. 4) were fed with their respective input values 

recorded during field trips and compared with actual outputs (Z values) collected during those visits to validate 

the statistical goodness of fit test further. Here, a 5% error bar was used in the graphical comparison between the 

actual and predicted Z, as shown in Fig. 5a and Fig. 5b. The graphical validations for two geo-mining parameters 

are shown here; the other two, which likewise showed a similar trend with little fluctuation, are not shown. 
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(b) 

Fig.5. Comparison between actual and predicted output (Z) for a. seam thickness values, b. gradient values.  

 

The discrepancy between predicted Z and real Z are found to be within the 5% error bar from the 

aforementioned comparisons (Fig. 5a and 5b), which graphically supports the associated equations. However, 

the final validation results are further discussed in this paper. 

Subsequently, the relationships between the machine parameters and the production-related parameter (Z) 

are established similarly. The following figures (Fig. 6a to 6d) show the associated curve-fitting and residual 

graphs. 
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(d) 

Fig.6. Curve-fitting and residual plot between a. drum width and Z, b. drum diameter and Z, c. cutter motor power and Z, d. cutter rpm and 

Z  

The curve-fitting plot between drum width and Z is depicted in Fig. 6a along with its corresponding residual 

plot. The curve indicates a very slight rising tendency as the drum width increases, and residual plots describe 

minor deflections of the curve with actual values. Statistical goodness of fit for the above curve-fitting is 

mentioned in the following Table 3, and its corresponding governing equation is mentioned below (Eq. 5).  

𝑙𝑜𝑔10 𝑌 = (0.01095 × 𝑋5) + 3.116            (5) 

Fig. 6b shows the curve-fitting and residual plot between drum diameter and Z, where it can be seen that the 

drum diameter affects the output very minutely, as it shows a minor reduction in output with increased drum 

diameter. The residual plot shows a minor deflection for most of the cases. The governing equation for the 

corresponding fitted curve is mentioned below as Eq. 6. Further goodness of fit test results for the curve-fitting 

are depicted in the following Table 3. 

𝑙𝑜𝑔10 𝑌 = (−0.3435 × 𝑋6) + 3.54           (6) 

The curve-fitting and corresponding residual plot between cutter motor power and Z is depicted in Fig. 6c. 

Where it can be seen that the value of Z gradually increases with an increase in cutter motor power, and the 

residual plot also depicts minor deflection from the actual values. The governing equation for the corresponding 

curve (Fig.6.c.) is mentioned as Eq. 7, whereas the statistical goodness of fit results are mentioned in table-3.  

𝑙𝑜𝑔10 𝑌 = (0.003732 × 𝑋7) + 1.754         (7) 

Curve-fitting and residual plots corresponding to cutter rpm and Z depict an increasing production trend 

with an increase in cutter rpm (Fig. 6d); the corresponding residual plot depicts a minor deflection. The 

governing equation related to the curve is mentioned in the following Equation 8. Further, the statistical 

goodness of fit for this curve-fitting is mentioned in Table 3.  

𝑙𝑜𝑔10 𝑌 = (0.002737 × 𝑋8) +  3.056     (8) 

Tab.3. Statistical goodness of fit results for equations corresponding to machine parameters 

Sl. No. 
Equation Name and 

No. 
The goodness of fit result t-test result (ɑ = 0.05) Remarks 

1. 
Drum width and Z 

(Eq.5.) 

R-square: 0.7462 

Adjusted R-square: 0.718 
RMSE: 0.1406 

p-value= 0.472 

p ˃ ɑ; so the null 

hypothesis cannot be 
rejected 

2. 
Drum diameter and Z 

(Eq.6.) 

R-square: 0.7339 

Adjusted R-square: 0.7044 
RMSE: 0.144 

p-value = 0.486 

p ˃ ɑ; so the null 

hypothesis cannot be 
rejected 

3. 
Cutter motor power 

and Z (Eq.7.) 

R-square: 0.8033 

Adjusted R-square: 0.7815 
RMSE: 0.1238 

p-value = 0.558 

p ˃ ɑ; so the null 

hypothesis cannot be 
rejected 

4. 
Cutter rpm and Z 

(Eq.8.) 

R-square: 0.5991 

Adjusted R-square: 0.5545 

RMSE: 0.1767 

p-value = 0.357 

p ˃ ɑ; so the null 

hypothesis cannot be 

rejected 

Note: 

For the above t-tests, the null (H0) and alternate (Ha) hypothesis are as follows: 

H0 = The difference between the means is equal to 0. 
Ha = The difference between the means is different from 0. 
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The goodness of fit results shown in Table 3 above indicate a good fit because the R2 and adjusted R2 values 

tend to be one, while the Root Mean Square Error (RMSE) value tends to be zero. However, the results of the t-

test on the predicted and actual Z as obtained from Eq. 5 to Eq. 8 for each of the eleven CM panels that were 

taken into consideration for the study showed no difference in their means (as for all equations p ˃ ɑ), which 

supports the relevance of those equations. 

Subsequently, a graphical comparison between the actual Z values and the Z values obtained by feeding the 

corresponding inputs into their associated governing equations (predicted Z) was performed with a 5% error bar 

for additional validation. Small variations between actual and predicted Z values represent a better fit during the 

corresponding curve-fitting. The Graphical comparison plots are depicted in the following Fig. 7a and Fig. 7b. 

Here, the graphical validations for two machine parameters are depicted; however, the other two parameters also 

represented similar trends of minimal variation; therefore, they are not represented here. 

 
(a)  

 
(b)  

Fig.7. Comparison between predicted and actual Z value for a. drum width, b. drum diameter. 

 

From Fig. 7a and Fig.7b, it can be identified that the variation between actual Z and predicted Z is minimal 

(within a 5% error bar), which substantiates the relevance of the governing equation and provides better curve-

fitting properties.  

Further, the governing equation considering all input parameters (geo-mining and machine parameters) 

together as input and Z as output was obtained by multivariate regression using XLSTAT add-in of MS-Excel. 

The corresponding equation is mentioned in Eq. 9. 

𝑙𝑜𝑔10 𝑌 = 36.55 − (0.2322 ×  𝑋1) + (0.11421 ×  𝑋2) − (0.000078 × 𝑋3) + (0.023075 × 𝑋4) −
 (23.428 × 𝑋5) +  (35.016 ×  𝑋6) + (0.028 ×  𝑋7) + (0.000934 × 𝑋8)        (9) 

 

The corresponding values of each input parameter, as recorded from each mine, were fed as input to the 

above-mentioned Eq. 9, which gave output values (predicted Z) corresponding to each mine. These output values 

were then graphically compared to the actual values of Z recorded during field visits to assess the equation's 

significance. This graphical comparison is shown in Fig. 8 below. 
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Fig.8. Comparison between actual and predicted output (Z) for the combined equation 

 

The variation between real Z and predicted Z is minor, as seen in Fig. 8, which indicates that the relevant 

equation has good prediction accuracy. Further, the results of the statistical t-test and goodness of fit are shown 

in Table 4 below. 
Tab.4. Goodness of fit test results for combined effect relationship equation.  

Sl. No. Equation Name and No. The goodness of fit result 
t-test result       

(ɑ = 0.05) 
Remarks 

1. 

Combined effect 

relationship model     

(eq.9) 

R square = 0.982 

Adjusted R square = 0.911 

RMSE = 0.079 

p-value = 0.983 
p ˃ ɑ; so the null hypothesis 

cannot be rejected 

Note: 

For the above t-test, the null (H0) and alternate (Ha) hypothesis are as follows: 

H0 = The difference between the means is equal to 0. 
Ha = The difference between the means is different from 0. 

The information in Tables 2, 3, and 4 above shows that each equation's p-value and associated goodness of 

fit is significantly good, which supports the relevance of each equation's input and output properties. Therefore, 

field data corresponding to three CM projects not considered for equation creation were used to further validate 

all equations (Eq.1. to Eq.9). 

Validation results 

As already mentioned, the datasets corresponding to three CM projects (Mine-J, Mine-K and Mine-L) were 

considered to validate all equations mentioned in this paper. Table 5 represents the data corresponding to all 

input parameters (X1 to X8) that were used for the purpose.  

Tab.5. Equation validation datasets 

Mine Name 
Seam Thickness 

(X1) 
Gradient (X2) 

Pillar 

area (X3) 

Coal 

strength (X4) 

Drum 

width (X5) 

Drum 

diameter (X6) 

Cutter 

motor 

power (X7) 

Cutter 

rpm (X8) 

Mine-J 4.75 3.82 1296 19.75 3.505 1.118 350 18.23 
Mine-K 3.7 2.49 400 28 3.3 0.965 350 21 

Mine-L 5.4 5.74 729 22.41 3.505 1.12 340 51 

The required input data from the above Table 5 were given to all equations (Equations 1 - 9) to anticipate 

the projected Z value for all three mines considered for validation. The predicted daily production value (average 

production daily in tonnes) was calculated using this predicted Z value. Then, using a significance level of 5% 

(i.e., ɑ = 0.05), t-tests were run between actual Z (obtained from the field visit) and predicted Z as well as 

between actual daily production (recorded during the field visit) and predicted daily production. The 

accompanying Table 6 shows information on the actual and predicted Z, as well as the actual and predicted daily 

production, together with their t-test findings. The null hypothesis (H0) and alternate hypothesis (Ha) for the t-

tests are mentioned below- 

H0 = the difference between the means is 0 

Ha = the difference between the means is not 0. 

The null hypothesis cannot be rejected when the p-value is more than ɑ.  

Discussion on results of modelling and validation 

The equation generation by curve-fitting considers one input parameter along with the production-related 

parameter (Actual Z) as the output, giving the R2 value. Through their corresponding R2 value, each input 

parameter's significance for predicting the Z value may be understood. Table- 2 shows the R2 value for each geo-

mining condition in relation to Actual Z. The greatest R2 value was shown for seam thickness (0.8779), followed 
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by pillar area (0.84), gradient (0.8112), and coal strength (0.6008). This indicates that the seam thickness has a 

better correlation with Z than other geo-mining parameters. Similarly, Table 3 depicts the R2 value for each 

machine parameter when correlated with the actual Z value, where cutter motor power depicted the highest R2 

value (0.8033), followed by drum width (0.7462), drum diameter (0.7339) and cutter rpm (0.5991). These 

findings make it clear that the cutter motor power exhibits a better correlation with connection to the Z value 

than other machine characteristics (drum width, drum diameter and cutter rpm). Further, their corresponding 

adjusted R square values and Root Mean Square Error (RMSE) values (depicted in Tables 2 and 3) also support 

the above conclusions drawn based on the R2 value and apprehend acceptable correlation between each input and 

output interrelationships.   

The validation results (Table 6) show that the p-value for the t-test performed between actual and predicted 

daily production as well as actual and predicted Z are much higher than the selected significance value (ɑ = 

0.05). Therefore, the null hypothesis cannot be rejected, and the difference between the means of predicted and 

actual Z, as well as predicted and actual daily production is 0. Moreover, by observing Table 6, it can also be 

easily concluded that the difference between the predicted and actual results is considerably lower. The results of 

the t-test and other relevant information mentioned in Table 6 validate the equations and prove their relevance 

with the actual CM-based underground coal mining phenomenon. 
 

Tab.6. Validation results for each equation 

Equation 

No. 

Mine- 

Name 
Actual Z Predicted Z 

Actual daily 

production 

(t) 

Predicted daily 

production (t) 

p-value of t-test 

between 

predicted and 

actual Z 

p-value of t-test between 

predicted and actual 

production (t) 

Eq.1. 

Mine-J 

Mine-K 

Mine-L 

3.175 

3.141 

2.967 

3.149 

3.221 

3.192 

1495 

1385 

927 

1408 

1663 

1556 

0.242 0.221 

Eq.2. 

Mine-J 

Mine-K 

Mine-L 

3.175 

3.141 

2.967 

3.116 

3.129 

3.097 

1495 

1385 

927 

1305 

1345 

1250 

0.782 0.870 

Eq.3. 

Mine-J 

Mine-K 

Mine-L 

3.175 

3.141 

2.967 

3.257 

3.051 

3.152 

1495 

1385 

927 

1807 

1125 

1420 

0.537 0.528 

Eq.4. 

Mine-J 

Mine-K 

Mine-L 

3.175 

3.141 

2.967 

3.206 

3.116 

3.177 

1495 

1385 

927 

1607 

1305 

1503 

0.361 0.358 

Eq.5. 

Mine-J 

Mine-K 

Mine-L 

3.175 

3.141 

2.967 

3.154 

3.152 

3.154 

1495 

1385 

927 

1427 

1419 

1427 

0.409 0.422 

Eq.6. 

Mine-J 

Mine-K 

Mine-L 

3.175 

3.141 

2.967 

3.156 

3.209 

3.155 

1495 

1385 

927 

1432 

1616 

1430 

0.303 0.292 

Eq.7. 

Mine-J 

Mine-K 

Mine-L 

3.175 

3.141 

2.967 

3.060 

3.060 

3.023 

1495 

1385 

927 

1149 

1149 

1054 

0.516 0.439 

Eq.8. 

Mine-J 

Mine-K 

Mine-L 

3.175 

3.141 

2.967 

3.106 

3.113 

3.196 

1495 

1385 

927 

1276 

1299 

1569 

0.567 0.601 

Eq.9. 

Mine-J 

Mine-K 

Mine-L 

3.175 

3.141 

2.967 

3.088 

2.888 

3.082 

1495 

1385 

927 

1224 

772 

1209 

0.460 0.429 

Note: For all t-tests, the value of ɑ was considered as 0.05 

Conclusion 

 

This study uses curve-fitting and regression modelling to identify correlations between variables in order to 

anticipate the production output from a Continuous Miner-based underground coal mining project. Discussions 

with experienced mining engineers and personnel led to identifying the independent parameters for this 

objective. Further, statistical testing for goodness of fit in connection to curve-fitting demonstrates the 

importance of each input parameter in predicting the Z value (output). The goodness of fit results revealed that 

seam thickness and cutter motor power correlate better with production-related parameters; their corresponding 

R2 values are 0.8779 and 0.8033. All chosen independent variables showed a stronger link with the actual Z 

value. A combined effect model was subsequently created, using all input parameters collectively as inputs and a 

production-related parameter as output. This model's goodness of fit results were outstanding (R2 = 0.982). 
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Additionally, datasets from three CM-based underground coal mines that were not considered during equation 

generation were fed into the interrelationships. The interrelationships' predictions' results were satisfactory, 

validating their ability to predict the production output in a working environment. Furthermore, it can be inferred 

that the generated interrelationships may be a useful tool for choosing equipment both for a brand-new project 

and a project already in operation. However, future inclusion of some other parameters, such as environmental 

parameters and data linked to inventory management, may improve the interrelationships' ability to predict 

outcomes more accurately. 
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